Loading…
Maximizing absorption and scattering by spherical nanoparticles
The absorption and scattering resonances of metal nanostructures are often assumed to be defined by the same condition of localized surface plasmon resonance. Using an electrostatic approximation, we demonstrate that the absorption and scattering cross sections of spherical nanoparticles reach their...
Saved in:
Published in: | Optics letters 2020-03, Vol.45 (6), p.1531 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The absorption and scattering resonances of metal nanostructures are often assumed to be defined by the same condition of localized surface plasmon resonance. Using an electrostatic approximation, we demonstrate that the absorption and scattering cross sections of spherical nanoparticles reach their maxima at different wavelengths, which in turn differ from that defined by the Fröhlich condition (FC). These deviations from the FC originate from and are proportional to the material absorption. Our results provide the design guidelines for maximizing absorption and scattering of spherical nanoparticles and are thus of special importance for applications where the efficiency of radiation absorption or scattering is crucial. |
---|---|
ISSN: | 0146-9592 1539-4794 |
DOI: | 10.1364/OL.387046 |