Loading…

A programmable polymer library that enables the construction of stimuli-responsive nanocarriers containing logic gates

Stimuli-responsive biomaterials that contain logic gates hold great potential for detecting and responding to pathological markers as part of clinical therapies. However, a major barrier is the lack of a generalized system that can be used to easily assemble different ligand-responsive units to form...

Full description

Saved in:
Bibliographic Details
Published in:Nature chemistry 2020-04, Vol.12 (4), p.381-390
Main Authors: Zhang, Penghui, Gao, Di, An, Keli, Shen, Qi, Wang, Chen, Zhang, Yuchao, Pan, Xiaoshu, Chen, Xigao, Lyv, Yifan, Cui, Cheng, Liang, Tingxizi, Duan, Xiaoman, Liu, Jie, Yang, Tielin, Hu, Xiaoxiao, Zhu, Jun-Jie, Xu, Feng, Tan, Weihong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c409t-487114d5c2232febce621c27d3fe00869fb2460c58c3e380ca8f422f9d507a023
cites cdi_FETCH-LOGICAL-c409t-487114d5c2232febce621c27d3fe00869fb2460c58c3e380ca8f422f9d507a023
container_end_page 390
container_issue 4
container_start_page 381
container_title Nature chemistry
container_volume 12
creator Zhang, Penghui
Gao, Di
An, Keli
Shen, Qi
Wang, Chen
Zhang, Yuchao
Pan, Xiaoshu
Chen, Xigao
Lyv, Yifan
Cui, Cheng
Liang, Tingxizi
Duan, Xiaoman
Liu, Jie
Yang, Tielin
Hu, Xiaoxiao
Zhu, Jun-Jie
Xu, Feng
Tan, Weihong
description Stimuli-responsive biomaterials that contain logic gates hold great potential for detecting and responding to pathological markers as part of clinical therapies. However, a major barrier is the lack of a generalized system that can be used to easily assemble different ligand-responsive units to form programmable nanodevices for advanced biocomputation. Here we develop a programmable polymer library by including responsive units in building blocks with similar structure and reactivity. Using these polymers, we have developed a series of smart nanocarriers with hierarchical structures containing logic gates linked to self-immolative motifs. Designed with disease biomarkers as inputs, our logic devices showed site-specific release of multiple therapeutics (including kinase inhibitors, drugs and short interfering RNA) in vitro and in vivo. We expect that this ‘plug and play’ platform will be expanded towards smart biomaterial engineering for therapeutic delivery, precision medicine, tissue engineering and stem cell therapy. A programmable polymer library that responds to external and internal stimuli has been developed and used to fabricate a series of nanocarriers for drug release. The carriers respond to disease biomarkers, triggering self-immolative motifs and leading to the site-specific release of therapeutics both in vitro and in vivo.
doi_str_mv 10.1038/s41557-020-0426-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2384220862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2384220862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-487114d5c2232febce621c27d3fe00869fb2460c58c3e380ca8f422f9d507a023</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0E4lH4ADbIEuuAn0m6RBUvqRIbWFuOOwmuErvYTqX-PY5aYMVqZnTP3NFchK4puaOE1_dRUCmrgjBSEMHKgh-hc1pJWQgu5se_PSdn6CLGNSGl5LQ8RWecUclEVZ2j7QPeBN8FPQy66QFvfL8bIODeNkGHHU6fOmFwkxbzANh4F1MYTbLeYd_imOww9rYIEDdZslvATjtvdAgWQpz4pK2zrsO976zBnU4QL9FJq_sIV4c6Qx9Pj--Ll2L59vy6eFgWRpB5KkRdUSpW0jDGWQuNgZJRw6oVb4GQupy3DRMlMbI2HHhNjK5bwVg7X0lSacL4DN3uffOTXyPEpNZ-DC6fVIzXGc0mE0X3lAk-xgCt2gQ75PcVJWpKWu2TVjlpNSWteN65OTiPzQCr342faDPA9kDMkusg_J3-3_UbkveLBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384220862</pqid></control><display><type>article</type><title>A programmable polymer library that enables the construction of stimuli-responsive nanocarriers containing logic gates</title><source>Nature Journals Online</source><creator>Zhang, Penghui ; Gao, Di ; An, Keli ; Shen, Qi ; Wang, Chen ; Zhang, Yuchao ; Pan, Xiaoshu ; Chen, Xigao ; Lyv, Yifan ; Cui, Cheng ; Liang, Tingxizi ; Duan, Xiaoman ; Liu, Jie ; Yang, Tielin ; Hu, Xiaoxiao ; Zhu, Jun-Jie ; Xu, Feng ; Tan, Weihong</creator><creatorcontrib>Zhang, Penghui ; Gao, Di ; An, Keli ; Shen, Qi ; Wang, Chen ; Zhang, Yuchao ; Pan, Xiaoshu ; Chen, Xigao ; Lyv, Yifan ; Cui, Cheng ; Liang, Tingxizi ; Duan, Xiaoman ; Liu, Jie ; Yang, Tielin ; Hu, Xiaoxiao ; Zhu, Jun-Jie ; Xu, Feng ; Tan, Weihong</creatorcontrib><description>Stimuli-responsive biomaterials that contain logic gates hold great potential for detecting and responding to pathological markers as part of clinical therapies. However, a major barrier is the lack of a generalized system that can be used to easily assemble different ligand-responsive units to form programmable nanodevices for advanced biocomputation. Here we develop a programmable polymer library by including responsive units in building blocks with similar structure and reactivity. Using these polymers, we have developed a series of smart nanocarriers with hierarchical structures containing logic gates linked to self-immolative motifs. Designed with disease biomarkers as inputs, our logic devices showed site-specific release of multiple therapeutics (including kinase inhibitors, drugs and short interfering RNA) in vitro and in vivo. We expect that this ‘plug and play’ platform will be expanded towards smart biomaterial engineering for therapeutic delivery, precision medicine, tissue engineering and stem cell therapy. A programmable polymer library that responds to external and internal stimuli has been developed and used to fabricate a series of nanocarriers for drug release. The carriers respond to disease biomarkers, triggering self-immolative motifs and leading to the site-specific release of therapeutics both in vitro and in vivo.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-020-0426-3</identifier><identifier>PMID: 32152477</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/350/354 ; 639/638/298/54/152 ; Analytical Chemistry ; Anilides - chemistry ; Anilides - pharmacology ; Animals ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacology ; Biochemistry ; Biomarkers ; Biomaterials ; Biomedical materials ; Cell Line, Tumor ; Cell therapy ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Cisplatin - chemistry ; Cisplatin - pharmacology ; Construction ; Drug Carriers - chemical synthesis ; Drug Carriers - chemistry ; Drug Carriers - metabolism ; Drug delivery systems ; Drug Liberation ; Female ; Gates ; Glutathione - metabolism ; Humans ; Hydrogen Peroxide - metabolism ; Inorganic Chemistry ; Kinases ; Libraries ; Logic ; Logic circuits ; Mice, Nude ; Nanoparticles - chemistry ; Nanoparticles - metabolism ; Nanotechnology devices ; Organic Chemistry ; Physical Chemistry ; Plug &amp; play ; Polyethylene Glycols - chemical synthesis ; Polyethylene Glycols - chemistry ; Polyethylene Glycols - metabolism ; Polyethyleneimine - chemical synthesis ; Polyethyleneimine - chemistry ; Polyethyleneimine - metabolism ; Polymers ; Precision medicine ; Proof of Concept Study ; Pyridines - chemistry ; Pyridines - pharmacology ; Ribonucleic acid ; RNA ; RNA, Small Interfering - chemistry ; RNA, Small Interfering - pharmacology ; siRNA ; Stem cells ; Stimuli ; Structural hierarchy ; Tissue engineering ; Xenograft Model Antitumor Assays</subject><ispartof>Nature chemistry, 2020-04, Vol.12 (4), p.381-390</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>2020© The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-487114d5c2232febce621c27d3fe00869fb2460c58c3e380ca8f422f9d507a023</citedby><cites>FETCH-LOGICAL-c409t-487114d5c2232febce621c27d3fe00869fb2460c58c3e380ca8f422f9d507a023</cites><orcidid>0000-0002-8066-1524 ; 0000-0002-6512-1511 ; 0000-0002-8201-1285</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32152477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Penghui</creatorcontrib><creatorcontrib>Gao, Di</creatorcontrib><creatorcontrib>An, Keli</creatorcontrib><creatorcontrib>Shen, Qi</creatorcontrib><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Zhang, Yuchao</creatorcontrib><creatorcontrib>Pan, Xiaoshu</creatorcontrib><creatorcontrib>Chen, Xigao</creatorcontrib><creatorcontrib>Lyv, Yifan</creatorcontrib><creatorcontrib>Cui, Cheng</creatorcontrib><creatorcontrib>Liang, Tingxizi</creatorcontrib><creatorcontrib>Duan, Xiaoman</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Yang, Tielin</creatorcontrib><creatorcontrib>Hu, Xiaoxiao</creatorcontrib><creatorcontrib>Zhu, Jun-Jie</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Tan, Weihong</creatorcontrib><title>A programmable polymer library that enables the construction of stimuli-responsive nanocarriers containing logic gates</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><addtitle>Nat Chem</addtitle><description>Stimuli-responsive biomaterials that contain logic gates hold great potential for detecting and responding to pathological markers as part of clinical therapies. However, a major barrier is the lack of a generalized system that can be used to easily assemble different ligand-responsive units to form programmable nanodevices for advanced biocomputation. Here we develop a programmable polymer library by including responsive units in building blocks with similar structure and reactivity. Using these polymers, we have developed a series of smart nanocarriers with hierarchical structures containing logic gates linked to self-immolative motifs. Designed with disease biomarkers as inputs, our logic devices showed site-specific release of multiple therapeutics (including kinase inhibitors, drugs and short interfering RNA) in vitro and in vivo. We expect that this ‘plug and play’ platform will be expanded towards smart biomaterial engineering for therapeutic delivery, precision medicine, tissue engineering and stem cell therapy. A programmable polymer library that responds to external and internal stimuli has been developed and used to fabricate a series of nanocarriers for drug release. The carriers respond to disease biomarkers, triggering self-immolative motifs and leading to the site-specific release of therapeutics both in vitro and in vivo.</description><subject>631/1647/350/354</subject><subject>639/638/298/54/152</subject><subject>Analytical Chemistry</subject><subject>Anilides - chemistry</subject><subject>Anilides - pharmacology</subject><subject>Animals</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Biochemistry</subject><subject>Biomarkers</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Cell Line, Tumor</subject><subject>Cell therapy</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Cisplatin - chemistry</subject><subject>Cisplatin - pharmacology</subject><subject>Construction</subject><subject>Drug Carriers - chemical synthesis</subject><subject>Drug Carriers - chemistry</subject><subject>Drug Carriers - metabolism</subject><subject>Drug delivery systems</subject><subject>Drug Liberation</subject><subject>Female</subject><subject>Gates</subject><subject>Glutathione - metabolism</subject><subject>Humans</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Inorganic Chemistry</subject><subject>Kinases</subject><subject>Libraries</subject><subject>Logic</subject><subject>Logic circuits</subject><subject>Mice, Nude</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - metabolism</subject><subject>Nanotechnology devices</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Plug &amp; play</subject><subject>Polyethylene Glycols - chemical synthesis</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polyethylene Glycols - metabolism</subject><subject>Polyethyleneimine - chemical synthesis</subject><subject>Polyethyleneimine - chemistry</subject><subject>Polyethyleneimine - metabolism</subject><subject>Polymers</subject><subject>Precision medicine</subject><subject>Proof of Concept Study</subject><subject>Pyridines - chemistry</subject><subject>Pyridines - pharmacology</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Small Interfering - chemistry</subject><subject>RNA, Small Interfering - pharmacology</subject><subject>siRNA</subject><subject>Stem cells</subject><subject>Stimuli</subject><subject>Structural hierarchy</subject><subject>Tissue engineering</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0E4lH4ADbIEuuAn0m6RBUvqRIbWFuOOwmuErvYTqX-PY5aYMVqZnTP3NFchK4puaOE1_dRUCmrgjBSEMHKgh-hc1pJWQgu5se_PSdn6CLGNSGl5LQ8RWecUclEVZ2j7QPeBN8FPQy66QFvfL8bIODeNkGHHU6fOmFwkxbzANh4F1MYTbLeYd_imOww9rYIEDdZslvATjtvdAgWQpz4pK2zrsO976zBnU4QL9FJq_sIV4c6Qx9Pj--Ll2L59vy6eFgWRpB5KkRdUSpW0jDGWQuNgZJRw6oVb4GQupy3DRMlMbI2HHhNjK5bwVg7X0lSacL4DN3uffOTXyPEpNZ-DC6fVIzXGc0mE0X3lAk-xgCt2gQ75PcVJWpKWu2TVjlpNSWteN65OTiPzQCr342faDPA9kDMkusg_J3-3_UbkveLBQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Zhang, Penghui</creator><creator>Gao, Di</creator><creator>An, Keli</creator><creator>Shen, Qi</creator><creator>Wang, Chen</creator><creator>Zhang, Yuchao</creator><creator>Pan, Xiaoshu</creator><creator>Chen, Xigao</creator><creator>Lyv, Yifan</creator><creator>Cui, Cheng</creator><creator>Liang, Tingxizi</creator><creator>Duan, Xiaoman</creator><creator>Liu, Jie</creator><creator>Yang, Tielin</creator><creator>Hu, Xiaoxiao</creator><creator>Zhu, Jun-Jie</creator><creator>Xu, Feng</creator><creator>Tan, Weihong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-8066-1524</orcidid><orcidid>https://orcid.org/0000-0002-6512-1511</orcidid><orcidid>https://orcid.org/0000-0002-8201-1285</orcidid></search><sort><creationdate>20200401</creationdate><title>A programmable polymer library that enables the construction of stimuli-responsive nanocarriers containing logic gates</title><author>Zhang, Penghui ; Gao, Di ; An, Keli ; Shen, Qi ; Wang, Chen ; Zhang, Yuchao ; Pan, Xiaoshu ; Chen, Xigao ; Lyv, Yifan ; Cui, Cheng ; Liang, Tingxizi ; Duan, Xiaoman ; Liu, Jie ; Yang, Tielin ; Hu, Xiaoxiao ; Zhu, Jun-Jie ; Xu, Feng ; Tan, Weihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-487114d5c2232febce621c27d3fe00869fb2460c58c3e380ca8f422f9d507a023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/1647/350/354</topic><topic>639/638/298/54/152</topic><topic>Analytical Chemistry</topic><topic>Anilides - chemistry</topic><topic>Anilides - pharmacology</topic><topic>Animals</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Biochemistry</topic><topic>Biomarkers</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Cell Line, Tumor</topic><topic>Cell therapy</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Cisplatin - chemistry</topic><topic>Cisplatin - pharmacology</topic><topic>Construction</topic><topic>Drug Carriers - chemical synthesis</topic><topic>Drug Carriers - chemistry</topic><topic>Drug Carriers - metabolism</topic><topic>Drug delivery systems</topic><topic>Drug Liberation</topic><topic>Female</topic><topic>Gates</topic><topic>Glutathione - metabolism</topic><topic>Humans</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Inorganic Chemistry</topic><topic>Kinases</topic><topic>Libraries</topic><topic>Logic</topic><topic>Logic circuits</topic><topic>Mice, Nude</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - metabolism</topic><topic>Nanotechnology devices</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Plug &amp; play</topic><topic>Polyethylene Glycols - chemical synthesis</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polyethylene Glycols - metabolism</topic><topic>Polyethyleneimine - chemical synthesis</topic><topic>Polyethyleneimine - chemistry</topic><topic>Polyethyleneimine - metabolism</topic><topic>Polymers</topic><topic>Precision medicine</topic><topic>Proof of Concept Study</topic><topic>Pyridines - chemistry</topic><topic>Pyridines - pharmacology</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Small Interfering - chemistry</topic><topic>RNA, Small Interfering - pharmacology</topic><topic>siRNA</topic><topic>Stem cells</topic><topic>Stimuli</topic><topic>Structural hierarchy</topic><topic>Tissue engineering</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Penghui</creatorcontrib><creatorcontrib>Gao, Di</creatorcontrib><creatorcontrib>An, Keli</creatorcontrib><creatorcontrib>Shen, Qi</creatorcontrib><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Zhang, Yuchao</creatorcontrib><creatorcontrib>Pan, Xiaoshu</creatorcontrib><creatorcontrib>Chen, Xigao</creatorcontrib><creatorcontrib>Lyv, Yifan</creatorcontrib><creatorcontrib>Cui, Cheng</creatorcontrib><creatorcontrib>Liang, Tingxizi</creatorcontrib><creatorcontrib>Duan, Xiaoman</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Yang, Tielin</creatorcontrib><creatorcontrib>Hu, Xiaoxiao</creatorcontrib><creatorcontrib>Zhu, Jun-Jie</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Tan, Weihong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Penghui</au><au>Gao, Di</au><au>An, Keli</au><au>Shen, Qi</au><au>Wang, Chen</au><au>Zhang, Yuchao</au><au>Pan, Xiaoshu</au><au>Chen, Xigao</au><au>Lyv, Yifan</au><au>Cui, Cheng</au><au>Liang, Tingxizi</au><au>Duan, Xiaoman</au><au>Liu, Jie</au><au>Yang, Tielin</au><au>Hu, Xiaoxiao</au><au>Zhu, Jun-Jie</au><au>Xu, Feng</au><au>Tan, Weihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A programmable polymer library that enables the construction of stimuli-responsive nanocarriers containing logic gates</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><addtitle>Nat Chem</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>12</volume><issue>4</issue><spage>381</spage><epage>390</epage><pages>381-390</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Stimuli-responsive biomaterials that contain logic gates hold great potential for detecting and responding to pathological markers as part of clinical therapies. However, a major barrier is the lack of a generalized system that can be used to easily assemble different ligand-responsive units to form programmable nanodevices for advanced biocomputation. Here we develop a programmable polymer library by including responsive units in building blocks with similar structure and reactivity. Using these polymers, we have developed a series of smart nanocarriers with hierarchical structures containing logic gates linked to self-immolative motifs. Designed with disease biomarkers as inputs, our logic devices showed site-specific release of multiple therapeutics (including kinase inhibitors, drugs and short interfering RNA) in vitro and in vivo. We expect that this ‘plug and play’ platform will be expanded towards smart biomaterial engineering for therapeutic delivery, precision medicine, tissue engineering and stem cell therapy. A programmable polymer library that responds to external and internal stimuli has been developed and used to fabricate a series of nanocarriers for drug release. The carriers respond to disease biomarkers, triggering self-immolative motifs and leading to the site-specific release of therapeutics both in vitro and in vivo.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32152477</pmid><doi>10.1038/s41557-020-0426-3</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8066-1524</orcidid><orcidid>https://orcid.org/0000-0002-6512-1511</orcidid><orcidid>https://orcid.org/0000-0002-8201-1285</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1755-4330
ispartof Nature chemistry, 2020-04, Vol.12 (4), p.381-390
issn 1755-4330
1755-4349
language eng
recordid cdi_proquest_journals_2384220862
source Nature Journals Online
subjects 631/1647/350/354
639/638/298/54/152
Analytical Chemistry
Anilides - chemistry
Anilides - pharmacology
Animals
Antineoplastic Agents - chemistry
Antineoplastic Agents - pharmacology
Biochemistry
Biomarkers
Biomaterials
Biomedical materials
Cell Line, Tumor
Cell therapy
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Cisplatin - chemistry
Cisplatin - pharmacology
Construction
Drug Carriers - chemical synthesis
Drug Carriers - chemistry
Drug Carriers - metabolism
Drug delivery systems
Drug Liberation
Female
Gates
Glutathione - metabolism
Humans
Hydrogen Peroxide - metabolism
Inorganic Chemistry
Kinases
Libraries
Logic
Logic circuits
Mice, Nude
Nanoparticles - chemistry
Nanoparticles - metabolism
Nanotechnology devices
Organic Chemistry
Physical Chemistry
Plug & play
Polyethylene Glycols - chemical synthesis
Polyethylene Glycols - chemistry
Polyethylene Glycols - metabolism
Polyethyleneimine - chemical synthesis
Polyethyleneimine - chemistry
Polyethyleneimine - metabolism
Polymers
Precision medicine
Proof of Concept Study
Pyridines - chemistry
Pyridines - pharmacology
Ribonucleic acid
RNA
RNA, Small Interfering - chemistry
RNA, Small Interfering - pharmacology
siRNA
Stem cells
Stimuli
Structural hierarchy
Tissue engineering
Xenograft Model Antitumor Assays
title A programmable polymer library that enables the construction of stimuli-responsive nanocarriers containing logic gates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A24%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20programmable%20polymer%20library%20that%20enables%20the%20construction%20of%20stimuli-responsive%20nanocarriers%20containing%20logic%20gates&rft.jtitle=Nature%20chemistry&rft.au=Zhang,%20Penghui&rft.date=2020-04-01&rft.volume=12&rft.issue=4&rft.spage=381&rft.epage=390&rft.pages=381-390&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-020-0426-3&rft_dat=%3Cproquest_cross%3E2384220862%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-487114d5c2232febce621c27d3fe00869fb2460c58c3e380ca8f422f9d507a023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2384220862&rft_id=info:pmid/32152477&rfr_iscdi=true