Loading…
A programmable polymer library that enables the construction of stimuli-responsive nanocarriers containing logic gates
Stimuli-responsive biomaterials that contain logic gates hold great potential for detecting and responding to pathological markers as part of clinical therapies. However, a major barrier is the lack of a generalized system that can be used to easily assemble different ligand-responsive units to form...
Saved in:
Published in: | Nature chemistry 2020-04, Vol.12 (4), p.381-390 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c409t-487114d5c2232febce621c27d3fe00869fb2460c58c3e380ca8f422f9d507a023 |
---|---|
cites | cdi_FETCH-LOGICAL-c409t-487114d5c2232febce621c27d3fe00869fb2460c58c3e380ca8f422f9d507a023 |
container_end_page | 390 |
container_issue | 4 |
container_start_page | 381 |
container_title | Nature chemistry |
container_volume | 12 |
creator | Zhang, Penghui Gao, Di An, Keli Shen, Qi Wang, Chen Zhang, Yuchao Pan, Xiaoshu Chen, Xigao Lyv, Yifan Cui, Cheng Liang, Tingxizi Duan, Xiaoman Liu, Jie Yang, Tielin Hu, Xiaoxiao Zhu, Jun-Jie Xu, Feng Tan, Weihong |
description | Stimuli-responsive biomaterials that contain logic gates hold great potential for detecting and responding to pathological markers as part of clinical therapies. However, a major barrier is the lack of a generalized system that can be used to easily assemble different ligand-responsive units to form programmable nanodevices for advanced biocomputation. Here we develop a programmable polymer library by including responsive units in building blocks with similar structure and reactivity. Using these polymers, we have developed a series of smart nanocarriers with hierarchical structures containing logic gates linked to self-immolative motifs. Designed with disease biomarkers as inputs, our logic devices showed site-specific release of multiple therapeutics (including kinase inhibitors, drugs and short interfering RNA) in vitro and in vivo. We expect that this ‘plug and play’ platform will be expanded towards smart biomaterial engineering for therapeutic delivery, precision medicine, tissue engineering and stem cell therapy.
A programmable polymer library that responds to external and internal stimuli has been developed and used to fabricate a series of nanocarriers for drug release. The carriers respond to disease biomarkers, triggering self-immolative motifs and leading to the site-specific release of therapeutics both in vitro and in vivo. |
doi_str_mv | 10.1038/s41557-020-0426-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2384220862</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2384220862</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-487114d5c2232febce621c27d3fe00869fb2460c58c3e380ca8f422f9d507a023</originalsourceid><addsrcrecordid>eNp1kMtOwzAQRS0E4lH4ADbIEuuAn0m6RBUvqRIbWFuOOwmuErvYTqX-PY5aYMVqZnTP3NFchK4puaOE1_dRUCmrgjBSEMHKgh-hc1pJWQgu5se_PSdn6CLGNSGl5LQ8RWecUclEVZ2j7QPeBN8FPQy66QFvfL8bIODeNkGHHU6fOmFwkxbzANh4F1MYTbLeYd_imOww9rYIEDdZslvATjtvdAgWQpz4pK2zrsO976zBnU4QL9FJq_sIV4c6Qx9Pj--Ll2L59vy6eFgWRpB5KkRdUSpW0jDGWQuNgZJRw6oVb4GQupy3DRMlMbI2HHhNjK5bwVg7X0lSacL4DN3uffOTXyPEpNZ-DC6fVIzXGc0mE0X3lAk-xgCt2gQ75PcVJWpKWu2TVjlpNSWteN65OTiPzQCr342faDPA9kDMkusg_J3-3_UbkveLBQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2384220862</pqid></control><display><type>article</type><title>A programmable polymer library that enables the construction of stimuli-responsive nanocarriers containing logic gates</title><source>Nature Journals Online</source><creator>Zhang, Penghui ; Gao, Di ; An, Keli ; Shen, Qi ; Wang, Chen ; Zhang, Yuchao ; Pan, Xiaoshu ; Chen, Xigao ; Lyv, Yifan ; Cui, Cheng ; Liang, Tingxizi ; Duan, Xiaoman ; Liu, Jie ; Yang, Tielin ; Hu, Xiaoxiao ; Zhu, Jun-Jie ; Xu, Feng ; Tan, Weihong</creator><creatorcontrib>Zhang, Penghui ; Gao, Di ; An, Keli ; Shen, Qi ; Wang, Chen ; Zhang, Yuchao ; Pan, Xiaoshu ; Chen, Xigao ; Lyv, Yifan ; Cui, Cheng ; Liang, Tingxizi ; Duan, Xiaoman ; Liu, Jie ; Yang, Tielin ; Hu, Xiaoxiao ; Zhu, Jun-Jie ; Xu, Feng ; Tan, Weihong</creatorcontrib><description>Stimuli-responsive biomaterials that contain logic gates hold great potential for detecting and responding to pathological markers as part of clinical therapies. However, a major barrier is the lack of a generalized system that can be used to easily assemble different ligand-responsive units to form programmable nanodevices for advanced biocomputation. Here we develop a programmable polymer library by including responsive units in building blocks with similar structure and reactivity. Using these polymers, we have developed a series of smart nanocarriers with hierarchical structures containing logic gates linked to self-immolative motifs. Designed with disease biomarkers as inputs, our logic devices showed site-specific release of multiple therapeutics (including kinase inhibitors, drugs and short interfering RNA) in vitro and in vivo. We expect that this ‘plug and play’ platform will be expanded towards smart biomaterial engineering for therapeutic delivery, precision medicine, tissue engineering and stem cell therapy.
A programmable polymer library that responds to external and internal stimuli has been developed and used to fabricate a series of nanocarriers for drug release. The carriers respond to disease biomarkers, triggering self-immolative motifs and leading to the site-specific release of therapeutics both in vitro and in vivo.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-020-0426-3</identifier><identifier>PMID: 32152477</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/1647/350/354 ; 639/638/298/54/152 ; Analytical Chemistry ; Anilides - chemistry ; Anilides - pharmacology ; Animals ; Antineoplastic Agents - chemistry ; Antineoplastic Agents - pharmacology ; Biochemistry ; Biomarkers ; Biomaterials ; Biomedical materials ; Cell Line, Tumor ; Cell therapy ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Cisplatin - chemistry ; Cisplatin - pharmacology ; Construction ; Drug Carriers - chemical synthesis ; Drug Carriers - chemistry ; Drug Carriers - metabolism ; Drug delivery systems ; Drug Liberation ; Female ; Gates ; Glutathione - metabolism ; Humans ; Hydrogen Peroxide - metabolism ; Inorganic Chemistry ; Kinases ; Libraries ; Logic ; Logic circuits ; Mice, Nude ; Nanoparticles - chemistry ; Nanoparticles - metabolism ; Nanotechnology devices ; Organic Chemistry ; Physical Chemistry ; Plug & play ; Polyethylene Glycols - chemical synthesis ; Polyethylene Glycols - chemistry ; Polyethylene Glycols - metabolism ; Polyethyleneimine - chemical synthesis ; Polyethyleneimine - chemistry ; Polyethyleneimine - metabolism ; Polymers ; Precision medicine ; Proof of Concept Study ; Pyridines - chemistry ; Pyridines - pharmacology ; Ribonucleic acid ; RNA ; RNA, Small Interfering - chemistry ; RNA, Small Interfering - pharmacology ; siRNA ; Stem cells ; Stimuli ; Structural hierarchy ; Tissue engineering ; Xenograft Model Antitumor Assays</subject><ispartof>Nature chemistry, 2020-04, Vol.12 (4), p.381-390</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><rights>2020© The Author(s), under exclusive licence to Springer Nature Limited 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-487114d5c2232febce621c27d3fe00869fb2460c58c3e380ca8f422f9d507a023</citedby><cites>FETCH-LOGICAL-c409t-487114d5c2232febce621c27d3fe00869fb2460c58c3e380ca8f422f9d507a023</cites><orcidid>0000-0002-8066-1524 ; 0000-0002-6512-1511 ; 0000-0002-8201-1285</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32152477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhang, Penghui</creatorcontrib><creatorcontrib>Gao, Di</creatorcontrib><creatorcontrib>An, Keli</creatorcontrib><creatorcontrib>Shen, Qi</creatorcontrib><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Zhang, Yuchao</creatorcontrib><creatorcontrib>Pan, Xiaoshu</creatorcontrib><creatorcontrib>Chen, Xigao</creatorcontrib><creatorcontrib>Lyv, Yifan</creatorcontrib><creatorcontrib>Cui, Cheng</creatorcontrib><creatorcontrib>Liang, Tingxizi</creatorcontrib><creatorcontrib>Duan, Xiaoman</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Yang, Tielin</creatorcontrib><creatorcontrib>Hu, Xiaoxiao</creatorcontrib><creatorcontrib>Zhu, Jun-Jie</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Tan, Weihong</creatorcontrib><title>A programmable polymer library that enables the construction of stimuli-responsive nanocarriers containing logic gates</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><addtitle>Nat Chem</addtitle><description>Stimuli-responsive biomaterials that contain logic gates hold great potential for detecting and responding to pathological markers as part of clinical therapies. However, a major barrier is the lack of a generalized system that can be used to easily assemble different ligand-responsive units to form programmable nanodevices for advanced biocomputation. Here we develop a programmable polymer library by including responsive units in building blocks with similar structure and reactivity. Using these polymers, we have developed a series of smart nanocarriers with hierarchical structures containing logic gates linked to self-immolative motifs. Designed with disease biomarkers as inputs, our logic devices showed site-specific release of multiple therapeutics (including kinase inhibitors, drugs and short interfering RNA) in vitro and in vivo. We expect that this ‘plug and play’ platform will be expanded towards smart biomaterial engineering for therapeutic delivery, precision medicine, tissue engineering and stem cell therapy.
A programmable polymer library that responds to external and internal stimuli has been developed and used to fabricate a series of nanocarriers for drug release. The carriers respond to disease biomarkers, triggering self-immolative motifs and leading to the site-specific release of therapeutics both in vitro and in vivo.</description><subject>631/1647/350/354</subject><subject>639/638/298/54/152</subject><subject>Analytical Chemistry</subject><subject>Anilides - chemistry</subject><subject>Anilides - pharmacology</subject><subject>Animals</subject><subject>Antineoplastic Agents - chemistry</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Biochemistry</subject><subject>Biomarkers</subject><subject>Biomaterials</subject><subject>Biomedical materials</subject><subject>Cell Line, Tumor</subject><subject>Cell therapy</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Cisplatin - chemistry</subject><subject>Cisplatin - pharmacology</subject><subject>Construction</subject><subject>Drug Carriers - chemical synthesis</subject><subject>Drug Carriers - chemistry</subject><subject>Drug Carriers - metabolism</subject><subject>Drug delivery systems</subject><subject>Drug Liberation</subject><subject>Female</subject><subject>Gates</subject><subject>Glutathione - metabolism</subject><subject>Humans</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Inorganic Chemistry</subject><subject>Kinases</subject><subject>Libraries</subject><subject>Logic</subject><subject>Logic circuits</subject><subject>Mice, Nude</subject><subject>Nanoparticles - chemistry</subject><subject>Nanoparticles - metabolism</subject><subject>Nanotechnology devices</subject><subject>Organic Chemistry</subject><subject>Physical Chemistry</subject><subject>Plug & play</subject><subject>Polyethylene Glycols - chemical synthesis</subject><subject>Polyethylene Glycols - chemistry</subject><subject>Polyethylene Glycols - metabolism</subject><subject>Polyethyleneimine - chemical synthesis</subject><subject>Polyethyleneimine - chemistry</subject><subject>Polyethyleneimine - metabolism</subject><subject>Polymers</subject><subject>Precision medicine</subject><subject>Proof of Concept Study</subject><subject>Pyridines - chemistry</subject><subject>Pyridines - pharmacology</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Small Interfering - chemistry</subject><subject>RNA, Small Interfering - pharmacology</subject><subject>siRNA</subject><subject>Stem cells</subject><subject>Stimuli</subject><subject>Structural hierarchy</subject><subject>Tissue engineering</subject><subject>Xenograft Model Antitumor Assays</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMtOwzAQRS0E4lH4ADbIEuuAn0m6RBUvqRIbWFuOOwmuErvYTqX-PY5aYMVqZnTP3NFchK4puaOE1_dRUCmrgjBSEMHKgh-hc1pJWQgu5se_PSdn6CLGNSGl5LQ8RWecUclEVZ2j7QPeBN8FPQy66QFvfL8bIODeNkGHHU6fOmFwkxbzANh4F1MYTbLeYd_imOww9rYIEDdZslvATjtvdAgWQpz4pK2zrsO976zBnU4QL9FJq_sIV4c6Qx9Pj--Ll2L59vy6eFgWRpB5KkRdUSpW0jDGWQuNgZJRw6oVb4GQupy3DRMlMbI2HHhNjK5bwVg7X0lSacL4DN3uffOTXyPEpNZ-DC6fVIzXGc0mE0X3lAk-xgCt2gQ75PcVJWpKWu2TVjlpNSWteN65OTiPzQCr342faDPA9kDMkusg_J3-3_UbkveLBQ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Zhang, Penghui</creator><creator>Gao, Di</creator><creator>An, Keli</creator><creator>Shen, Qi</creator><creator>Wang, Chen</creator><creator>Zhang, Yuchao</creator><creator>Pan, Xiaoshu</creator><creator>Chen, Xigao</creator><creator>Lyv, Yifan</creator><creator>Cui, Cheng</creator><creator>Liang, Tingxizi</creator><creator>Duan, Xiaoman</creator><creator>Liu, Jie</creator><creator>Yang, Tielin</creator><creator>Hu, Xiaoxiao</creator><creator>Zhu, Jun-Jie</creator><creator>Xu, Feng</creator><creator>Tan, Weihong</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0002-8066-1524</orcidid><orcidid>https://orcid.org/0000-0002-6512-1511</orcidid><orcidid>https://orcid.org/0000-0002-8201-1285</orcidid></search><sort><creationdate>20200401</creationdate><title>A programmable polymer library that enables the construction of stimuli-responsive nanocarriers containing logic gates</title><author>Zhang, Penghui ; Gao, Di ; An, Keli ; Shen, Qi ; Wang, Chen ; Zhang, Yuchao ; Pan, Xiaoshu ; Chen, Xigao ; Lyv, Yifan ; Cui, Cheng ; Liang, Tingxizi ; Duan, Xiaoman ; Liu, Jie ; Yang, Tielin ; Hu, Xiaoxiao ; Zhu, Jun-Jie ; Xu, Feng ; Tan, Weihong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-487114d5c2232febce621c27d3fe00869fb2460c58c3e380ca8f422f9d507a023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>631/1647/350/354</topic><topic>639/638/298/54/152</topic><topic>Analytical Chemistry</topic><topic>Anilides - chemistry</topic><topic>Anilides - pharmacology</topic><topic>Animals</topic><topic>Antineoplastic Agents - chemistry</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Biochemistry</topic><topic>Biomarkers</topic><topic>Biomaterials</topic><topic>Biomedical materials</topic><topic>Cell Line, Tumor</topic><topic>Cell therapy</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Cisplatin - chemistry</topic><topic>Cisplatin - pharmacology</topic><topic>Construction</topic><topic>Drug Carriers - chemical synthesis</topic><topic>Drug Carriers - chemistry</topic><topic>Drug Carriers - metabolism</topic><topic>Drug delivery systems</topic><topic>Drug Liberation</topic><topic>Female</topic><topic>Gates</topic><topic>Glutathione - metabolism</topic><topic>Humans</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Inorganic Chemistry</topic><topic>Kinases</topic><topic>Libraries</topic><topic>Logic</topic><topic>Logic circuits</topic><topic>Mice, Nude</topic><topic>Nanoparticles - chemistry</topic><topic>Nanoparticles - metabolism</topic><topic>Nanotechnology devices</topic><topic>Organic Chemistry</topic><topic>Physical Chemistry</topic><topic>Plug & play</topic><topic>Polyethylene Glycols - chemical synthesis</topic><topic>Polyethylene Glycols - chemistry</topic><topic>Polyethylene Glycols - metabolism</topic><topic>Polyethyleneimine - chemical synthesis</topic><topic>Polyethyleneimine - chemistry</topic><topic>Polyethyleneimine - metabolism</topic><topic>Polymers</topic><topic>Precision medicine</topic><topic>Proof of Concept Study</topic><topic>Pyridines - chemistry</topic><topic>Pyridines - pharmacology</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Small Interfering - chemistry</topic><topic>RNA, Small Interfering - pharmacology</topic><topic>siRNA</topic><topic>Stem cells</topic><topic>Stimuli</topic><topic>Structural hierarchy</topic><topic>Tissue engineering</topic><topic>Xenograft Model Antitumor Assays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Penghui</creatorcontrib><creatorcontrib>Gao, Di</creatorcontrib><creatorcontrib>An, Keli</creatorcontrib><creatorcontrib>Shen, Qi</creatorcontrib><creatorcontrib>Wang, Chen</creatorcontrib><creatorcontrib>Zhang, Yuchao</creatorcontrib><creatorcontrib>Pan, Xiaoshu</creatorcontrib><creatorcontrib>Chen, Xigao</creatorcontrib><creatorcontrib>Lyv, Yifan</creatorcontrib><creatorcontrib>Cui, Cheng</creatorcontrib><creatorcontrib>Liang, Tingxizi</creatorcontrib><creatorcontrib>Duan, Xiaoman</creatorcontrib><creatorcontrib>Liu, Jie</creatorcontrib><creatorcontrib>Yang, Tielin</creatorcontrib><creatorcontrib>Hu, Xiaoxiao</creatorcontrib><creatorcontrib>Zhu, Jun-Jie</creatorcontrib><creatorcontrib>Xu, Feng</creatorcontrib><creatorcontrib>Tan, Weihong</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Penghui</au><au>Gao, Di</au><au>An, Keli</au><au>Shen, Qi</au><au>Wang, Chen</au><au>Zhang, Yuchao</au><au>Pan, Xiaoshu</au><au>Chen, Xigao</au><au>Lyv, Yifan</au><au>Cui, Cheng</au><au>Liang, Tingxizi</au><au>Duan, Xiaoman</au><au>Liu, Jie</au><au>Yang, Tielin</au><au>Hu, Xiaoxiao</au><au>Zhu, Jun-Jie</au><au>Xu, Feng</au><au>Tan, Weihong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A programmable polymer library that enables the construction of stimuli-responsive nanocarriers containing logic gates</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><addtitle>Nat Chem</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>12</volume><issue>4</issue><spage>381</spage><epage>390</epage><pages>381-390</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Stimuli-responsive biomaterials that contain logic gates hold great potential for detecting and responding to pathological markers as part of clinical therapies. However, a major barrier is the lack of a generalized system that can be used to easily assemble different ligand-responsive units to form programmable nanodevices for advanced biocomputation. Here we develop a programmable polymer library by including responsive units in building blocks with similar structure and reactivity. Using these polymers, we have developed a series of smart nanocarriers with hierarchical structures containing logic gates linked to self-immolative motifs. Designed with disease biomarkers as inputs, our logic devices showed site-specific release of multiple therapeutics (including kinase inhibitors, drugs and short interfering RNA) in vitro and in vivo. We expect that this ‘plug and play’ platform will be expanded towards smart biomaterial engineering for therapeutic delivery, precision medicine, tissue engineering and stem cell therapy.
A programmable polymer library that responds to external and internal stimuli has been developed and used to fabricate a series of nanocarriers for drug release. The carriers respond to disease biomarkers, triggering self-immolative motifs and leading to the site-specific release of therapeutics both in vitro and in vivo.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>32152477</pmid><doi>10.1038/s41557-020-0426-3</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-8066-1524</orcidid><orcidid>https://orcid.org/0000-0002-6512-1511</orcidid><orcidid>https://orcid.org/0000-0002-8201-1285</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2020-04, Vol.12 (4), p.381-390 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_proquest_journals_2384220862 |
source | Nature Journals Online |
subjects | 631/1647/350/354 639/638/298/54/152 Analytical Chemistry Anilides - chemistry Anilides - pharmacology Animals Antineoplastic Agents - chemistry Antineoplastic Agents - pharmacology Biochemistry Biomarkers Biomaterials Biomedical materials Cell Line, Tumor Cell therapy Chemistry Chemistry and Materials Science Chemistry/Food Science Cisplatin - chemistry Cisplatin - pharmacology Construction Drug Carriers - chemical synthesis Drug Carriers - chemistry Drug Carriers - metabolism Drug delivery systems Drug Liberation Female Gates Glutathione - metabolism Humans Hydrogen Peroxide - metabolism Inorganic Chemistry Kinases Libraries Logic Logic circuits Mice, Nude Nanoparticles - chemistry Nanoparticles - metabolism Nanotechnology devices Organic Chemistry Physical Chemistry Plug & play Polyethylene Glycols - chemical synthesis Polyethylene Glycols - chemistry Polyethylene Glycols - metabolism Polyethyleneimine - chemical synthesis Polyethyleneimine - chemistry Polyethyleneimine - metabolism Polymers Precision medicine Proof of Concept Study Pyridines - chemistry Pyridines - pharmacology Ribonucleic acid RNA RNA, Small Interfering - chemistry RNA, Small Interfering - pharmacology siRNA Stem cells Stimuli Structural hierarchy Tissue engineering Xenograft Model Antitumor Assays |
title | A programmable polymer library that enables the construction of stimuli-responsive nanocarriers containing logic gates |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A24%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20programmable%20polymer%20library%20that%20enables%20the%20construction%20of%20stimuli-responsive%20nanocarriers%20containing%20logic%20gates&rft.jtitle=Nature%20chemistry&rft.au=Zhang,%20Penghui&rft.date=2020-04-01&rft.volume=12&rft.issue=4&rft.spage=381&rft.epage=390&rft.pages=381-390&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-020-0426-3&rft_dat=%3Cproquest_cross%3E2384220862%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c409t-487114d5c2232febce621c27d3fe00869fb2460c58c3e380ca8f422f9d507a023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2384220862&rft_id=info:pmid/32152477&rfr_iscdi=true |