Loading…

Effects of zinc oxide nanoelicitors on yield, secondary metabolites, zinc and iron absorption of Feverfew (Tanacetum parthenium (L.) Schultz Bip.)

Nanoelicitors are biological and non-biological factors that can affect the synthesis of secondary metabolites in medicinal plants. Feverfew is a valuable medicinal plant containing effective and important anti-cancer compounds (essential oil and parthenolide). This study was conducted to investigat...

Full description

Saved in:
Bibliographic Details
Published in:Acta physiologiae plantarum 2020-04, Vol.42 (4), Article 52
Main Authors: Shahhoseini, Reza, Azizi, Majid, Asili, Javad, Moshtaghi, Nasrin, Samiei, Leila
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Nanoelicitors are biological and non-biological factors that can affect the synthesis of secondary metabolites in medicinal plants. Feverfew is a valuable medicinal plant containing effective and important anti-cancer compounds (essential oil and parthenolide). This study was conducted to investigate the effects of zinc oxide nanoparticles (ZnONPs) on yield, metabolites content, and zinc and iron absorption of Feverfew. After seed preparation, seedling production, soil physicochemical properties analysis, ZnONPs treatments, maintenance and harvesting at full flowering stage, morphological traits and yield components were measured. The essential oil was extracted by Clevenger and parthenolide was identified by UPLC-MRM-MS. The content of Zn and Fe were measured by OES-ICP. The effects of ZnONPs were significant on all morpho-phytochemical traits. An increased biological yield (dry weight) was observed at 2000 ppm ZnONPs (32.54 g/day) compared to control (28.09 g/day). The highest (0.9% V/W) and lowest (0.56% V/W) content of essential oil were related to 1000 ppm ZnONPs and control. The content of parthenolide decreased at different levels of ZnONPs. The lowest (36.83 mg/kg DW) and highest (266.02 mg/kg DW) rates of Zn absorption were observed in control and 2000 ppm ZnONPs. Nanoparticles at all concentrations increased the biological yield, essential oil content, and Zn absorption. None of the ZnONPs concentrations improved the flower yield. Along with increasing ZnONPs and Zn uptake, parthenolide levels decreased. Also, it was determined that there was an antagonistic effect between Zn and Fe absorption.
ISSN:0137-5881
1861-1664
DOI:10.1007/s11738-020-03043-x