Loading…

Novel sunflower MIMO fractal antenna with low mutual coupling and dual wide operating bands

A novel multiple-input and multiple-output (MIMO) fractal antenna excited by a coplanar waveguide was investigated in this study. A novel technique was used to improve the isolation of 20 dB between the dual radiating elements by inserting a strip line into the outer edges of the ground plane. A sun...

Full description

Saved in:
Bibliographic Details
Published in:International journal of microwave and wireless technologies 2020-05, Vol.12 (4), p.323-331
Main Author: Abed, Amer T.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A novel multiple-input and multiple-output (MIMO) fractal antenna excited by a coplanar waveguide was investigated in this study. A novel technique was used to improve the isolation of 20 dB between the dual radiating elements by inserting a strip line into the outer edges of the ground plane. A sunflower structure was used to configure the antenna in three steps. At each step, an additional sunflower structure was added with half the size of that used in the previous step to enhance the impedance bandwidth. The measured values of envelop correlation coefficient and total active reflection coefficient indicated that the proposed MIMO antenna has high-diversity performance between radiating elements. Wide dual operating bands of 2–2.9 and 5–10 GHz were obtained, which can support different wireless communications, such as 3G, LTE (2.6 GHz), WLAN (2.4 GHz/5 GHz), WiMAX (2.4 GHz/5GHz), ISM (2.4 GHz/5 GHz), 5G (5–6 GHz), and satellite communications (6–8 GHz). The MIMO fractal antenna with a small size achieved a maximum efficiency of 85% and a peak value gain of 6 dBi, low-channel capacity loss of 0.15–0.4 b/s/Hz, and high isolation between radiating elements is suitable for portable communication devices.
ISSN:1759-0787
1759-0795
DOI:10.1017/S1759078719001375