Loading…

Unsuitability of the Beavers–Joseph interface condition for filtration problems

Coupled free-flow and porous-medium systems appear in a variety of industrial and environmental applications. Fluid flow in the free-flow domain is typically described by the (Navier–)Stokes equations while Darcy’s law is applied in the porous medium. The correct choice of coupling conditions on the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of fluid mechanics 2020-06, Vol.892, Article A10
Main Authors: Eggenweiler, Elissa, Rybak, Iryna
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Coupled free-flow and porous-medium systems appear in a variety of industrial and environmental applications. Fluid flow in the free-flow domain is typically described by the (Navier–)Stokes equations while Darcy’s law is applied in the porous medium. The correct choice of coupling conditions on the fluid–porous interface is crucial for accurate numerical simulations of coupled problems. We found out that the Beavers–Joseph interface condition, which is widely used not only for fluid flow parallel to the porous layer but also for filtration problems, is unsuitable for arbitrary flow directions. To validate our statement, we provide several examples and compare numerical simulation results for the coupled Stokes–Darcy problems to the pore-scale resolved models. We show also that the Beavers–Joseph parameter cannot be fitted for arbitrary flow directions.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2020.194