Loading…

Microencapsulated phase change material via Pickering emulsion stabilized by graphene oxide for photothermal conversion

In this study, Pickering suspension polymerization was used to synthesize thermally stable microencapsulated phase change materials (microPCMs) with n -eicosane as the PCM, polyurea (PUA) as the shell, and graphene oxide (GO) as the colloidal stabilizer. Accordingly, the GO-modified microPCMs (GO@PU...

Full description

Saved in:
Bibliographic Details
Published in:Journal of materials science 2020-06, Vol.55 (18), p.7731-7742
Main Authors: Maithya, Onesmus Musyoki, Li, Xiang, Feng, Xueling, Sui, Xiaofeng, Wang, Bijia
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c429t-c77edf9147496491430f5d41949951b7ee8c6a2fa9b07c9af35c2041c2665c523
cites cdi_FETCH-LOGICAL-c429t-c77edf9147496491430f5d41949951b7ee8c6a2fa9b07c9af35c2041c2665c523
container_end_page 7742
container_issue 18
container_start_page 7731
container_title Journal of materials science
container_volume 55
creator Maithya, Onesmus Musyoki
Li, Xiang
Feng, Xueling
Sui, Xiaofeng
Wang, Bijia
description In this study, Pickering suspension polymerization was used to synthesize thermally stable microencapsulated phase change materials (microPCMs) with n -eicosane as the PCM, polyurea (PUA) as the shell, and graphene oxide (GO) as the colloidal stabilizer. Accordingly, the GO-modified microPCMs (GO@PUAmPCM) prepared at different GO emulsion concentrations were investigated and compared. These microcapsules exhibited high thermal storage of about 70% (180 J/g), leakage prevention, and high solar harvesting capacity with efficient photothermal conversion efficiency (60%). GO@PUAmPCM also showed good thermal reliability, and no leakage was observed after 100 heating and cooling cycles. The process developed herein can be embraced to fabricate highly efficient and reliable PCM microcapsules for solar energy harvesting.
doi_str_mv 10.1007/s10853-020-04499-5
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2385584411</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A619347216</galeid><sourcerecordid>A619347216</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-c77edf9147496491430f5d41949951b7ee8c6a2fa9b07c9af35c2041c2665c523</originalsourceid><addsrcrecordid>eNp9kUtv1TAQhSMEEpfCH2BliRWLtH4m8bKqoFRqBeKxtnydca5LEgfbKS2_nrkECXWDvBh5dL7x-Jyqes3oKaO0PcuMdkrUlNOaSql1rZ5UO6ZaUcuOiqfVjlLOay4b9rx6kfMtpVS1nO2qnzfBpQizs0teR1ugJ8vBZiDuYOcByIStFOxI7oIln4L7jrd5IDCtYw5xJrnYfRjDL-T2D2RIdjnADCTehx6IjwmnxRLLAdKEQ1yc7yAdwZfVM2_HDK_-1pPq2_t3Xy8-1NcfL68uzq9rJ7kutWtb6L1mspW6kVgF9aqXTOMfFdu3AJ1rLPdW72nrtPVCOU4lc7xplFNcnFRvtrlLij9WyMXcxjXN-KTholOqk5IxVJ1uqsGOYMLsY0nW4elhCrg0-ID984ZpIdG2BoG3jwDUFLgvg11zNldfPj_W8k2LRuecwJslhcmmB8OoOaZntvQMpmf-pGcUQmKD8nI0HNK_vf9D_QbF5J2h</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2385584411</pqid></control><display><type>article</type><title>Microencapsulated phase change material via Pickering emulsion stabilized by graphene oxide for photothermal conversion</title><source>Springer Nature</source><creator>Maithya, Onesmus Musyoki ; Li, Xiang ; Feng, Xueling ; Sui, Xiaofeng ; Wang, Bijia</creator><creatorcontrib>Maithya, Onesmus Musyoki ; Li, Xiang ; Feng, Xueling ; Sui, Xiaofeng ; Wang, Bijia</creatorcontrib><description>In this study, Pickering suspension polymerization was used to synthesize thermally stable microencapsulated phase change materials (microPCMs) with n -eicosane as the PCM, polyurea (PUA) as the shell, and graphene oxide (GO) as the colloidal stabilizer. Accordingly, the GO-modified microPCMs (GO@PUAmPCM) prepared at different GO emulsion concentrations were investigated and compared. These microcapsules exhibited high thermal storage of about 70% (180 J/g), leakage prevention, and high solar harvesting capacity with efficient photothermal conversion efficiency (60%). GO@PUAmPCM also showed good thermal reliability, and no leakage was observed after 100 heating and cooling cycles. The process developed herein can be embraced to fabricate highly efficient and reliable PCM microcapsules for solar energy harvesting.</description><identifier>ISSN: 0022-2461</identifier><identifier>EISSN: 1573-4803</identifier><identifier>DOI: 10.1007/s10853-020-04499-5</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Crystallography and Scattering Methods ; Electric power production ; Energy harvesting ; Energy Materials ; Graphene ; Graphite ; Leakage ; Materials Science ; Phase change materials ; Photothermal conversion ; Polyamides ; Polymer Sciences ; Polymerization ; Product development ; Solar energy ; Solid Mechanics ; Suspension polymerization ; Thermal energy ; Thermal stability ; Thermal storage</subject><ispartof>Journal of materials science, 2020-06, Vol.55 (18), p.7731-7742</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-c77edf9147496491430f5d41949951b7ee8c6a2fa9b07c9af35c2041c2665c523</citedby><cites>FETCH-LOGICAL-c429t-c77edf9147496491430f5d41949951b7ee8c6a2fa9b07c9af35c2041c2665c523</cites><orcidid>0000-0001-5705-3179</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Maithya, Onesmus Musyoki</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Feng, Xueling</creatorcontrib><creatorcontrib>Sui, Xiaofeng</creatorcontrib><creatorcontrib>Wang, Bijia</creatorcontrib><title>Microencapsulated phase change material via Pickering emulsion stabilized by graphene oxide for photothermal conversion</title><title>Journal of materials science</title><addtitle>J Mater Sci</addtitle><description>In this study, Pickering suspension polymerization was used to synthesize thermally stable microencapsulated phase change materials (microPCMs) with n -eicosane as the PCM, polyurea (PUA) as the shell, and graphene oxide (GO) as the colloidal stabilizer. Accordingly, the GO-modified microPCMs (GO@PUAmPCM) prepared at different GO emulsion concentrations were investigated and compared. These microcapsules exhibited high thermal storage of about 70% (180 J/g), leakage prevention, and high solar harvesting capacity with efficient photothermal conversion efficiency (60%). GO@PUAmPCM also showed good thermal reliability, and no leakage was observed after 100 heating and cooling cycles. The process developed herein can be embraced to fabricate highly efficient and reliable PCM microcapsules for solar energy harvesting.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Crystallography and Scattering Methods</subject><subject>Electric power production</subject><subject>Energy harvesting</subject><subject>Energy Materials</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Leakage</subject><subject>Materials Science</subject><subject>Phase change materials</subject><subject>Photothermal conversion</subject><subject>Polyamides</subject><subject>Polymer Sciences</subject><subject>Polymerization</subject><subject>Product development</subject><subject>Solar energy</subject><subject>Solid Mechanics</subject><subject>Suspension polymerization</subject><subject>Thermal energy</subject><subject>Thermal stability</subject><subject>Thermal storage</subject><issn>0022-2461</issn><issn>1573-4803</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kUtv1TAQhSMEEpfCH2BliRWLtH4m8bKqoFRqBeKxtnydca5LEgfbKS2_nrkECXWDvBh5dL7x-Jyqes3oKaO0PcuMdkrUlNOaSql1rZ5UO6ZaUcuOiqfVjlLOay4b9rx6kfMtpVS1nO2qnzfBpQizs0teR1ugJ8vBZiDuYOcByIStFOxI7oIln4L7jrd5IDCtYw5xJrnYfRjDL-T2D2RIdjnADCTehx6IjwmnxRLLAdKEQ1yc7yAdwZfVM2_HDK_-1pPq2_t3Xy8-1NcfL68uzq9rJ7kutWtb6L1mspW6kVgF9aqXTOMfFdu3AJ1rLPdW72nrtPVCOU4lc7xplFNcnFRvtrlLij9WyMXcxjXN-KTholOqk5IxVJ1uqsGOYMLsY0nW4elhCrg0-ID984ZpIdG2BoG3jwDUFLgvg11zNldfPj_W8k2LRuecwJslhcmmB8OoOaZntvQMpmf-pGcUQmKD8nI0HNK_vf9D_QbF5J2h</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Maithya, Onesmus Musyoki</creator><creator>Li, Xiang</creator><creator>Feng, Xueling</creator><creator>Sui, Xiaofeng</creator><creator>Wang, Bijia</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0001-5705-3179</orcidid></search><sort><creationdate>20200601</creationdate><title>Microencapsulated phase change material via Pickering emulsion stabilized by graphene oxide for photothermal conversion</title><author>Maithya, Onesmus Musyoki ; Li, Xiang ; Feng, Xueling ; Sui, Xiaofeng ; Wang, Bijia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-c77edf9147496491430f5d41949951b7ee8c6a2fa9b07c9af35c2041c2665c523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Crystallography and Scattering Methods</topic><topic>Electric power production</topic><topic>Energy harvesting</topic><topic>Energy Materials</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Leakage</topic><topic>Materials Science</topic><topic>Phase change materials</topic><topic>Photothermal conversion</topic><topic>Polyamides</topic><topic>Polymer Sciences</topic><topic>Polymerization</topic><topic>Product development</topic><topic>Solar energy</topic><topic>Solid Mechanics</topic><topic>Suspension polymerization</topic><topic>Thermal energy</topic><topic>Thermal stability</topic><topic>Thermal storage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Maithya, Onesmus Musyoki</creatorcontrib><creatorcontrib>Li, Xiang</creatorcontrib><creatorcontrib>Feng, Xueling</creatorcontrib><creatorcontrib>Sui, Xiaofeng</creatorcontrib><creatorcontrib>Wang, Bijia</creatorcontrib><collection>CrossRef</collection><collection>Science in Context</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>Journal of materials science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Maithya, Onesmus Musyoki</au><au>Li, Xiang</au><au>Feng, Xueling</au><au>Sui, Xiaofeng</au><au>Wang, Bijia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Microencapsulated phase change material via Pickering emulsion stabilized by graphene oxide for photothermal conversion</atitle><jtitle>Journal of materials science</jtitle><stitle>J Mater Sci</stitle><date>2020-06-01</date><risdate>2020</risdate><volume>55</volume><issue>18</issue><spage>7731</spage><epage>7742</epage><pages>7731-7742</pages><issn>0022-2461</issn><eissn>1573-4803</eissn><abstract>In this study, Pickering suspension polymerization was used to synthesize thermally stable microencapsulated phase change materials (microPCMs) with n -eicosane as the PCM, polyurea (PUA) as the shell, and graphene oxide (GO) as the colloidal stabilizer. Accordingly, the GO-modified microPCMs (GO@PUAmPCM) prepared at different GO emulsion concentrations were investigated and compared. These microcapsules exhibited high thermal storage of about 70% (180 J/g), leakage prevention, and high solar harvesting capacity with efficient photothermal conversion efficiency (60%). GO@PUAmPCM also showed good thermal reliability, and no leakage was observed after 100 heating and cooling cycles. The process developed herein can be embraced to fabricate highly efficient and reliable PCM microcapsules for solar energy harvesting.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10853-020-04499-5</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5705-3179</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-2461
ispartof Journal of materials science, 2020-06, Vol.55 (18), p.7731-7742
issn 0022-2461
1573-4803
language eng
recordid cdi_proquest_journals_2385584411
source Springer Nature
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Crystallography and Scattering Methods
Electric power production
Energy harvesting
Energy Materials
Graphene
Graphite
Leakage
Materials Science
Phase change materials
Photothermal conversion
Polyamides
Polymer Sciences
Polymerization
Product development
Solar energy
Solid Mechanics
Suspension polymerization
Thermal energy
Thermal stability
Thermal storage
title Microencapsulated phase change material via Pickering emulsion stabilized by graphene oxide for photothermal conversion
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T11%3A50%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Microencapsulated%20phase%20change%20material%20via%20Pickering%20emulsion%20stabilized%20by%20graphene%20oxide%20for%20photothermal%20conversion&rft.jtitle=Journal%20of%20materials%20science&rft.au=Maithya,%20Onesmus%20Musyoki&rft.date=2020-06-01&rft.volume=55&rft.issue=18&rft.spage=7731&rft.epage=7742&rft.pages=7731-7742&rft.issn=0022-2461&rft.eissn=1573-4803&rft_id=info:doi/10.1007/s10853-020-04499-5&rft_dat=%3Cgale_proqu%3EA619347216%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-c77edf9147496491430f5d41949951b7ee8c6a2fa9b07c9af35c2041c2665c523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2385584411&rft_id=info:pmid/&rft_galeid=A619347216&rfr_iscdi=true