Loading…

Photovoltaic Application of Rice Flake-Shaped ZnO Nanostructures

Rice flake-shaped zinc oxide nanocrystallites were synthesized through a polymer-assisted, one-step hydrothermal route with an average size of 200–600 nm. The role of polymer concentration in the evolution of the nanostructure was evaluated, and the material was characterized using x-ray diffraction...

Full description

Saved in:
Bibliographic Details
Published in:Journal of electronic materials 2020-05, Vol.49 (5), p.3290-3300
Main Authors: Unni, Gautam E., Vineeth, V. N., Anjusree, G. S., Vadukumpully, Sajini, Pillai, V. P. Mahadevan, Nair, A. Sreekumaran, Suresh, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c356t-e9164e0581541f8a6ab0d7b58df570e2b7c4863f8e9e92f624fd1ad93820a14c3
cites cdi_FETCH-LOGICAL-c356t-e9164e0581541f8a6ab0d7b58df570e2b7c4863f8e9e92f624fd1ad93820a14c3
container_end_page 3300
container_issue 5
container_start_page 3290
container_title Journal of electronic materials
container_volume 49
creator Unni, Gautam E.
Vineeth, V. N.
Anjusree, G. S.
Vadukumpully, Sajini
Pillai, V. P. Mahadevan
Nair, A. Sreekumaran
Suresh, S.
description Rice flake-shaped zinc oxide nanocrystallites were synthesized through a polymer-assisted, one-step hydrothermal route with an average size of 200–600 nm. The role of polymer concentration in the evolution of the nanostructure was evaluated, and the material was characterized using x-ray diffraction, electron microscopy, x-ray photoelectron spectroscopy, and ultraviolet–visible (UV–Vis) spectroscopy. The two-dimensional (2D) nanoflakes were demonstrated as promising photoanode material for dye-sensitized solar cells. Compared with hydrothermally prepared zinc oxide nanoparticles, the rice flake-shaped crystallites exhibited higher dye loading and light-scattering ability, which elicited a substantial increase in the light conversion efficiency. Thus, a fabricated solar cell with an active area of of 0.25 cm 2 was provided with a niobium pentoxide blocking layer through radio frequency magnetron sputter coating at the zinc oxide/transparent conducting oxide interface to boost the efficiency up to 7.09% from 5.72% under 1.5-AM conditions.
doi_str_mv 10.1007/s11664-020-08008-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2385585457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2385585457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-e9164e0581541f8a6ab0d7b58df570e2b7c4863f8e9e92f624fd1ad93820a14c3</originalsourceid><addsrcrecordid>eNp9kE1LxDAURYMoOI7-AVcF19GXpEnTncPgqDA44geIm5CmidOxNjVpZfz3Viu4c_U25977OAgdEzglANlZJESIFAMFDBJA4u0OmhCeMkykeNpFE2CCYE4Z30cHMW4ACCeSTND57dp3_sPXna5MMmvbujK6q3yTeJfcVcYmi1q_Wny_1q0tk-dmldzoxscu9Kbrg42HaM_pOtqj3ztFj4uLh_kVXq4ur-ezJTaMiw7bnIjUApfDU8RJLXQBZVZwWTqegaVFZlIpmJM2tzl1gqauJLrMmaSgSWrYFJ2MvW3w772Nndr4PjTDpKJMci55yrOBoiNlgo8xWKfaUL3p8KkIqG9TajSlBlPqx5TaDiE2huIANy82_FX_k_oCGBtrlA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2385585457</pqid></control><display><type>article</type><title>Photovoltaic Application of Rice Flake-Shaped ZnO Nanostructures</title><source>Springer Nature</source><creator>Unni, Gautam E. ; Vineeth, V. N. ; Anjusree, G. S. ; Vadukumpully, Sajini ; Pillai, V. P. Mahadevan ; Nair, A. Sreekumaran ; Suresh, S.</creator><creatorcontrib>Unni, Gautam E. ; Vineeth, V. N. ; Anjusree, G. S. ; Vadukumpully, Sajini ; Pillai, V. P. Mahadevan ; Nair, A. Sreekumaran ; Suresh, S.</creatorcontrib><description>Rice flake-shaped zinc oxide nanocrystallites were synthesized through a polymer-assisted, one-step hydrothermal route with an average size of 200–600 nm. The role of polymer concentration in the evolution of the nanostructure was evaluated, and the material was characterized using x-ray diffraction, electron microscopy, x-ray photoelectron spectroscopy, and ultraviolet–visible (UV–Vis) spectroscopy. The two-dimensional (2D) nanoflakes were demonstrated as promising photoanode material for dye-sensitized solar cells. Compared with hydrothermally prepared zinc oxide nanoparticles, the rice flake-shaped crystallites exhibited higher dye loading and light-scattering ability, which elicited a substantial increase in the light conversion efficiency. Thus, a fabricated solar cell with an active area of of 0.25 cm 2 was provided with a niobium pentoxide blocking layer through radio frequency magnetron sputter coating at the zinc oxide/transparent conducting oxide interface to boost the efficiency up to 7.09% from 5.72% under 1.5-AM conditions.</description><identifier>ISSN: 0361-5235</identifier><identifier>EISSN: 1543-186X</identifier><identifier>DOI: 10.1007/s11664-020-08008-x</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Crystallites ; Dye-sensitized solar cells ; Dyes ; Electronics and Microelectronics ; Flakes ; Instrumentation ; Light scattering ; Materials Science ; Nanoparticles ; Nanostructure ; Niobium oxides ; Optical and Electronic Materials ; Photoelectrons ; Photovoltaic cells ; Polymers ; Solid State Physics ; Spectrum analysis ; Zinc coatings ; Zinc oxide ; Zinc oxides</subject><ispartof>Journal of electronic materials, 2020-05, Vol.49 (5), p.3290-3300</ispartof><rights>The Minerals, Metals &amp; Materials Society 2020</rights><rights>The Minerals, Metals &amp; Materials Society 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-e9164e0581541f8a6ab0d7b58df570e2b7c4863f8e9e92f624fd1ad93820a14c3</citedby><cites>FETCH-LOGICAL-c356t-e9164e0581541f8a6ab0d7b58df570e2b7c4863f8e9e92f624fd1ad93820a14c3</cites><orcidid>0000-0001-8780-7963</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Unni, Gautam E.</creatorcontrib><creatorcontrib>Vineeth, V. N.</creatorcontrib><creatorcontrib>Anjusree, G. S.</creatorcontrib><creatorcontrib>Vadukumpully, Sajini</creatorcontrib><creatorcontrib>Pillai, V. P. Mahadevan</creatorcontrib><creatorcontrib>Nair, A. Sreekumaran</creatorcontrib><creatorcontrib>Suresh, S.</creatorcontrib><title>Photovoltaic Application of Rice Flake-Shaped ZnO Nanostructures</title><title>Journal of electronic materials</title><addtitle>Journal of Elec Materi</addtitle><description>Rice flake-shaped zinc oxide nanocrystallites were synthesized through a polymer-assisted, one-step hydrothermal route with an average size of 200–600 nm. The role of polymer concentration in the evolution of the nanostructure was evaluated, and the material was characterized using x-ray diffraction, electron microscopy, x-ray photoelectron spectroscopy, and ultraviolet–visible (UV–Vis) spectroscopy. The two-dimensional (2D) nanoflakes were demonstrated as promising photoanode material for dye-sensitized solar cells. Compared with hydrothermally prepared zinc oxide nanoparticles, the rice flake-shaped crystallites exhibited higher dye loading and light-scattering ability, which elicited a substantial increase in the light conversion efficiency. Thus, a fabricated solar cell with an active area of of 0.25 cm 2 was provided with a niobium pentoxide blocking layer through radio frequency magnetron sputter coating at the zinc oxide/transparent conducting oxide interface to boost the efficiency up to 7.09% from 5.72% under 1.5-AM conditions.</description><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Crystallites</subject><subject>Dye-sensitized solar cells</subject><subject>Dyes</subject><subject>Electronics and Microelectronics</subject><subject>Flakes</subject><subject>Instrumentation</subject><subject>Light scattering</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Niobium oxides</subject><subject>Optical and Electronic Materials</subject><subject>Photoelectrons</subject><subject>Photovoltaic cells</subject><subject>Polymers</subject><subject>Solid State Physics</subject><subject>Spectrum analysis</subject><subject>Zinc coatings</subject><subject>Zinc oxide</subject><subject>Zinc oxides</subject><issn>0361-5235</issn><issn>1543-186X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAURYMoOI7-AVcF19GXpEnTncPgqDA44geIm5CmidOxNjVpZfz3Viu4c_U25977OAgdEzglANlZJESIFAMFDBJA4u0OmhCeMkykeNpFE2CCYE4Z30cHMW4ACCeSTND57dp3_sPXna5MMmvbujK6q3yTeJfcVcYmi1q_Wny_1q0tk-dmldzoxscu9Kbrg42HaM_pOtqj3ztFj4uLh_kVXq4ur-ezJTaMiw7bnIjUApfDU8RJLXQBZVZwWTqegaVFZlIpmJM2tzl1gqauJLrMmaSgSWrYFJ2MvW3w772Nndr4PjTDpKJMci55yrOBoiNlgo8xWKfaUL3p8KkIqG9TajSlBlPqx5TaDiE2huIANy82_FX_k_oCGBtrlA</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Unni, Gautam E.</creator><creator>Vineeth, V. N.</creator><creator>Anjusree, G. S.</creator><creator>Vadukumpully, Sajini</creator><creator>Pillai, V. P. Mahadevan</creator><creator>Nair, A. Sreekumaran</creator><creator>Suresh, S.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0X</scope><orcidid>https://orcid.org/0000-0001-8780-7963</orcidid></search><sort><creationdate>20200501</creationdate><title>Photovoltaic Application of Rice Flake-Shaped ZnO Nanostructures</title><author>Unni, Gautam E. ; Vineeth, V. N. ; Anjusree, G. S. ; Vadukumpully, Sajini ; Pillai, V. P. Mahadevan ; Nair, A. Sreekumaran ; Suresh, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-e9164e0581541f8a6ab0d7b58df570e2b7c4863f8e9e92f624fd1ad93820a14c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Crystallites</topic><topic>Dye-sensitized solar cells</topic><topic>Dyes</topic><topic>Electronics and Microelectronics</topic><topic>Flakes</topic><topic>Instrumentation</topic><topic>Light scattering</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Niobium oxides</topic><topic>Optical and Electronic Materials</topic><topic>Photoelectrons</topic><topic>Photovoltaic cells</topic><topic>Polymers</topic><topic>Solid State Physics</topic><topic>Spectrum analysis</topic><topic>Zinc coatings</topic><topic>Zinc oxide</topic><topic>Zinc oxides</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Unni, Gautam E.</creatorcontrib><creatorcontrib>Vineeth, V. N.</creatorcontrib><creatorcontrib>Anjusree, G. S.</creatorcontrib><creatorcontrib>Vadukumpully, Sajini</creatorcontrib><creatorcontrib>Pillai, V. P. Mahadevan</creatorcontrib><creatorcontrib>Nair, A. Sreekumaran</creatorcontrib><creatorcontrib>Suresh, S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Research Library (ProQuest)</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of electronic materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Unni, Gautam E.</au><au>Vineeth, V. N.</au><au>Anjusree, G. S.</au><au>Vadukumpully, Sajini</au><au>Pillai, V. P. Mahadevan</au><au>Nair, A. Sreekumaran</au><au>Suresh, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Photovoltaic Application of Rice Flake-Shaped ZnO Nanostructures</atitle><jtitle>Journal of electronic materials</jtitle><stitle>Journal of Elec Materi</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>49</volume><issue>5</issue><spage>3290</spage><epage>3300</epage><pages>3290-3300</pages><issn>0361-5235</issn><eissn>1543-186X</eissn><abstract>Rice flake-shaped zinc oxide nanocrystallites were synthesized through a polymer-assisted, one-step hydrothermal route with an average size of 200–600 nm. The role of polymer concentration in the evolution of the nanostructure was evaluated, and the material was characterized using x-ray diffraction, electron microscopy, x-ray photoelectron spectroscopy, and ultraviolet–visible (UV–Vis) spectroscopy. The two-dimensional (2D) nanoflakes were demonstrated as promising photoanode material for dye-sensitized solar cells. Compared with hydrothermally prepared zinc oxide nanoparticles, the rice flake-shaped crystallites exhibited higher dye loading and light-scattering ability, which elicited a substantial increase in the light conversion efficiency. Thus, a fabricated solar cell with an active area of of 0.25 cm 2 was provided with a niobium pentoxide blocking layer through radio frequency magnetron sputter coating at the zinc oxide/transparent conducting oxide interface to boost the efficiency up to 7.09% from 5.72% under 1.5-AM conditions.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11664-020-08008-x</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-8780-7963</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0361-5235
ispartof Journal of electronic materials, 2020-05, Vol.49 (5), p.3290-3300
issn 0361-5235
1543-186X
language eng
recordid cdi_proquest_journals_2385585457
source Springer Nature
subjects Characterization and Evaluation of Materials
Chemistry and Materials Science
Crystallites
Dye-sensitized solar cells
Dyes
Electronics and Microelectronics
Flakes
Instrumentation
Light scattering
Materials Science
Nanoparticles
Nanostructure
Niobium oxides
Optical and Electronic Materials
Photoelectrons
Photovoltaic cells
Polymers
Solid State Physics
Spectrum analysis
Zinc coatings
Zinc oxide
Zinc oxides
title Photovoltaic Application of Rice Flake-Shaped ZnO Nanostructures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A45%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Photovoltaic%20Application%20of%20Rice%20Flake-Shaped%20ZnO%20Nanostructures&rft.jtitle=Journal%20of%20electronic%20materials&rft.au=Unni,%20Gautam%20E.&rft.date=2020-05-01&rft.volume=49&rft.issue=5&rft.spage=3290&rft.epage=3300&rft.pages=3290-3300&rft.issn=0361-5235&rft.eissn=1543-186X&rft_id=info:doi/10.1007/s11664-020-08008-x&rft_dat=%3Cproquest_cross%3E2385585457%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-e9164e0581541f8a6ab0d7b58df570e2b7c4863f8e9e92f624fd1ad93820a14c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2385585457&rft_id=info:pmid/&rfr_iscdi=true