Loading…
Characterization of Extra Virgin Olive Oil from Southern Brazil
Six olive oils extracted from the cultivars Arbequina, Arbosana, Coratina, Frantoio, Koroneiki, and Picual from 2017 and 2018 harvests, cultivated in Pinheiro Machado, Rio Grande do Sul, Brazil, are evaluated for standard oil composition parameters and bioactive constituents (pigments, tocopherols,...
Saved in:
Published in: | European journal of lipid science and technology 2020-04, Vol.122 (4), p.n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Six olive oils extracted from the cultivars Arbequina, Arbosana, Coratina, Frantoio, Koroneiki, and Picual from 2017 and 2018 harvests, cultivated in Pinheiro Machado, Rio Grande do Sul, Brazil, are evaluated for standard oil composition parameters and bioactive constituents (pigments, tocopherols, and phenolic compounds). Multivariate principal component analysis (PCA) and univariate ANOVA and Fisher's LSD test are used to verify the effect of cultivar and harvest year on oil composition. Olive oil composition met extra virgin olive oil (EVOO) standard parameters and is influenced by both cultivar and harvest year. EVOO produced in 2018 has greater chlorophyll, caffeic acid, ligstroside aglycone, hydroxyoleuropein aglycone, syringic acid, and hydroxytyrosol acetate contents than the EVOOs from 2017. Linoleic acid, ferulic acid, ligstroside aglycone, and hydroxytyrosol acetate are the variables whose contents most contributed to the differentiation of oils by cultivar in both harvest years. Chemical characterization analyses allow for the differentiation of oil composition based on harvest year and cultivar. Metabolic quality data obtained here support the establishment of a local EVOO profile and the compounds that most contributed to treatment differentiation may serve as markers that can be utilized in determining origin, cultivar, and harvest year.
Practical Applications: Olive production in Brazil is recent and is based on European cultivars which have not been bred for the local environmental conditions. Therefore, the measurement of olive oil metabolic quality will determine cultivar adaptability to local edaphoclimatic conditions as well as assist in the establishment of a standard of identity for the product and promote the development of its market. Olive oil produced in Southern Brazil shows high quality, and is especially rich in phenolic compounds. Although harvest year influences oil composition, oil from both harvests meet EVOO standards and cultivar specific metabolic markers are observed. This study provides the foundation for olive producers in Southern Brazil to seek authentication of the geographical origin of olive oil.
Harvest year and cultivar influence chemical composition of extra virgin olive oil (EVOO) of Southern Brazil. |
---|---|
ISSN: | 1438-7697 1438-9312 |
DOI: | 10.1002/ejlt.201900347 |