Loading…

Cryopreservation of DNA Origami Nanostructures

Although DNA origami nanostructures have found their way into numerous fields of fundamental and applied research, they often suffer from rather limited stability when subjected to environments that differ from the employed assembly conditions, that is, suspended in Mg2+‐containing buffer at moderat...

Full description

Saved in:
Bibliographic Details
Published in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2020-04, Vol.16 (13), p.e1905959-n/a
Main Authors: Xin, Yang, Kielar, Charlotte, Zhu, Siqi, Sikeler, Christoph, Xu, Xiaodan, Möser, Christin, Grundmeier, Guido, Liedl, Tim, Heuer‐Jungemann, Amelie, Smith, David M., Keller, Adrian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4139-dfa57e7f65f26d30d80332848d3db53ff5d11f79d5c0fce4e663b1c644cba8e13
cites cdi_FETCH-LOGICAL-c4139-dfa57e7f65f26d30d80332848d3db53ff5d11f79d5c0fce4e663b1c644cba8e13
container_end_page n/a
container_issue 13
container_start_page e1905959
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 16
creator Xin, Yang
Kielar, Charlotte
Zhu, Siqi
Sikeler, Christoph
Xu, Xiaodan
Möser, Christin
Grundmeier, Guido
Liedl, Tim
Heuer‐Jungemann, Amelie
Smith, David M.
Keller, Adrian
description Although DNA origami nanostructures have found their way into numerous fields of fundamental and applied research, they often suffer from rather limited stability when subjected to environments that differ from the employed assembly conditions, that is, suspended in Mg2+‐containing buffer at moderate temperatures. Here, means for efficient cryopreservation of 2D and 3D DNA origami nanostructures and, in particular, the effect of repeated freezing and thawing cycles are investigated. It is found that, while the 2D DNA origami nanostructures maintain their structural integrity over at least 32 freeze–thaw cycles, ice crystal formation makes the DNA origami gradually more sensitive toward harsh sample treatment conditions. Whereas no freeze damage could be detected in 3D DNA origami nanostructures subjected to 32 freeze–thaw cycles, 1000 freeze–thaw cycles result in significant fragmentation. The cryoprotectants glycerol and trehalose are found to efficiently protect the DNA origami nanostructures against freeze damage at concentrations between 0.2 × 10−3 and 200 × 10−3 m and without any negative effects on DNA origami shape. This work thus provides a basis for the long‐term storage of DNA origami nanostructures, which is an important prerequisite for various technological and medical applications. The stability of 2D and 3D DNA origami nanostructures subjected to repeated freeze–thaw cycles is investigated at both −20 and −196 °C. While being surprisingly stable under these conditions, ice crystal formation nevertheless gradually compromises the structural integrity of the DNA origami. Freeze damage can be suppressed by low concentrations of the cryoprotectants glycerol and trehalose.
doi_str_mv 10.1002/smll.201905959
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2385723590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2385723590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4139-dfa57e7f65f26d30d80332848d3db53ff5d11f79d5c0fce4e663b1c644cba8e13</originalsourceid><addsrcrecordid>eNqFkD1PwzAQQC0EoqWwMqJIzAm2L3bssSrlQwrtAMxWEtsoVVIXOwH135OqpYxMd8O7d9JD6JrghGBM70LbNAnFRGImmTxBY8IJxFxQeXrcCR6hixBWGAOhaXaORkAJ4EzAGCUzv3Ubb4LxX0VXu3XkbHS_mEZLX38UbR0tirULne-rrh-oS3RmiyaYq8OcoPeH-dvsKc6Xj8-zaR5XKQEZa1uwzGSWM0u5BqwFBqAiFRp0ycBapgmxmdSswrYyqeEcSlLxNK3KQhgCE3S79268--xN6NTK9X49vFQUBMsoMIkHKtlTlXcheGPVxtdt4beKYLXLo3Z51DHPcHBz0PZla_QR_-0xAHIPfNeN2f6jU68vef4n_wGjtnEJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2385723590</pqid></control><display><type>article</type><title>Cryopreservation of DNA Origami Nanostructures</title><source>Wiley</source><creator>Xin, Yang ; Kielar, Charlotte ; Zhu, Siqi ; Sikeler, Christoph ; Xu, Xiaodan ; Möser, Christin ; Grundmeier, Guido ; Liedl, Tim ; Heuer‐Jungemann, Amelie ; Smith, David M. ; Keller, Adrian</creator><creatorcontrib>Xin, Yang ; Kielar, Charlotte ; Zhu, Siqi ; Sikeler, Christoph ; Xu, Xiaodan ; Möser, Christin ; Grundmeier, Guido ; Liedl, Tim ; Heuer‐Jungemann, Amelie ; Smith, David M. ; Keller, Adrian</creatorcontrib><description>Although DNA origami nanostructures have found their way into numerous fields of fundamental and applied research, they often suffer from rather limited stability when subjected to environments that differ from the employed assembly conditions, that is, suspended in Mg2+‐containing buffer at moderate temperatures. Here, means for efficient cryopreservation of 2D and 3D DNA origami nanostructures and, in particular, the effect of repeated freezing and thawing cycles are investigated. It is found that, while the 2D DNA origami nanostructures maintain their structural integrity over at least 32 freeze–thaw cycles, ice crystal formation makes the DNA origami gradually more sensitive toward harsh sample treatment conditions. Whereas no freeze damage could be detected in 3D DNA origami nanostructures subjected to 32 freeze–thaw cycles, 1000 freeze–thaw cycles result in significant fragmentation. The cryoprotectants glycerol and trehalose are found to efficiently protect the DNA origami nanostructures against freeze damage at concentrations between 0.2 × 10−3 and 200 × 10−3 m and without any negative effects on DNA origami shape. This work thus provides a basis for the long‐term storage of DNA origami nanostructures, which is an important prerequisite for various technological and medical applications. The stability of 2D and 3D DNA origami nanostructures subjected to repeated freeze–thaw cycles is investigated at both −20 and −196 °C. While being surprisingly stable under these conditions, ice crystal formation nevertheless gradually compromises the structural integrity of the DNA origami. Freeze damage can be suppressed by low concentrations of the cryoprotectants glycerol and trehalose.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201905959</identifier><identifier>PMID: 32130783</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Cryopreservation ; Cryopreservation - methods ; Cryoprotectants ; Cryoprotective Agents - pharmacology ; Crystal structure ; Damage detection ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA - drug effects ; DNA Damage ; DNA origami ; freeze damage ; Freeze thaw cycles ; Freezing ; Glycerol - pharmacology ; Ice crystals ; Ice formation ; Nanostructure ; nanostructures ; Nanostructures - chemistry ; Nanotechnology ; Shape effects ; Structural integrity ; Trehalose ; Trehalose - pharmacology</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2020-04, Vol.16 (13), p.e1905959-n/a</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2020 The Authors. Published by WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4139-dfa57e7f65f26d30d80332848d3db53ff5d11f79d5c0fce4e663b1c644cba8e13</citedby><cites>FETCH-LOGICAL-c4139-dfa57e7f65f26d30d80332848d3db53ff5d11f79d5c0fce4e663b1c644cba8e13</cites><orcidid>0000-0001-7139-3110</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32130783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xin, Yang</creatorcontrib><creatorcontrib>Kielar, Charlotte</creatorcontrib><creatorcontrib>Zhu, Siqi</creatorcontrib><creatorcontrib>Sikeler, Christoph</creatorcontrib><creatorcontrib>Xu, Xiaodan</creatorcontrib><creatorcontrib>Möser, Christin</creatorcontrib><creatorcontrib>Grundmeier, Guido</creatorcontrib><creatorcontrib>Liedl, Tim</creatorcontrib><creatorcontrib>Heuer‐Jungemann, Amelie</creatorcontrib><creatorcontrib>Smith, David M.</creatorcontrib><creatorcontrib>Keller, Adrian</creatorcontrib><title>Cryopreservation of DNA Origami Nanostructures</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Although DNA origami nanostructures have found their way into numerous fields of fundamental and applied research, they often suffer from rather limited stability when subjected to environments that differ from the employed assembly conditions, that is, suspended in Mg2+‐containing buffer at moderate temperatures. Here, means for efficient cryopreservation of 2D and 3D DNA origami nanostructures and, in particular, the effect of repeated freezing and thawing cycles are investigated. It is found that, while the 2D DNA origami nanostructures maintain their structural integrity over at least 32 freeze–thaw cycles, ice crystal formation makes the DNA origami gradually more sensitive toward harsh sample treatment conditions. Whereas no freeze damage could be detected in 3D DNA origami nanostructures subjected to 32 freeze–thaw cycles, 1000 freeze–thaw cycles result in significant fragmentation. The cryoprotectants glycerol and trehalose are found to efficiently protect the DNA origami nanostructures against freeze damage at concentrations between 0.2 × 10−3 and 200 × 10−3 m and without any negative effects on DNA origami shape. This work thus provides a basis for the long‐term storage of DNA origami nanostructures, which is an important prerequisite for various technological and medical applications. The stability of 2D and 3D DNA origami nanostructures subjected to repeated freeze–thaw cycles is investigated at both −20 and −196 °C. While being surprisingly stable under these conditions, ice crystal formation nevertheless gradually compromises the structural integrity of the DNA origami. Freeze damage can be suppressed by low concentrations of the cryoprotectants glycerol and trehalose.</description><subject>Cryopreservation</subject><subject>Cryopreservation - methods</subject><subject>Cryoprotectants</subject><subject>Cryoprotective Agents - pharmacology</subject><subject>Crystal structure</subject><subject>Damage detection</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - drug effects</subject><subject>DNA Damage</subject><subject>DNA origami</subject><subject>freeze damage</subject><subject>Freeze thaw cycles</subject><subject>Freezing</subject><subject>Glycerol - pharmacology</subject><subject>Ice crystals</subject><subject>Ice formation</subject><subject>Nanostructure</subject><subject>nanostructures</subject><subject>Nanostructures - chemistry</subject><subject>Nanotechnology</subject><subject>Shape effects</subject><subject>Structural integrity</subject><subject>Trehalose</subject><subject>Trehalose - pharmacology</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkD1PwzAQQC0EoqWwMqJIzAm2L3bssSrlQwrtAMxWEtsoVVIXOwH135OqpYxMd8O7d9JD6JrghGBM70LbNAnFRGImmTxBY8IJxFxQeXrcCR6hixBWGAOhaXaORkAJ4EzAGCUzv3Ubb4LxX0VXu3XkbHS_mEZLX38UbR0tirULne-rrh-oS3RmiyaYq8OcoPeH-dvsKc6Xj8-zaR5XKQEZa1uwzGSWM0u5BqwFBqAiFRp0ycBapgmxmdSswrYyqeEcSlLxNK3KQhgCE3S79268--xN6NTK9X49vFQUBMsoMIkHKtlTlXcheGPVxtdt4beKYLXLo3Z51DHPcHBz0PZla_QR_-0xAHIPfNeN2f6jU68vef4n_wGjtnEJ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Xin, Yang</creator><creator>Kielar, Charlotte</creator><creator>Zhu, Siqi</creator><creator>Sikeler, Christoph</creator><creator>Xu, Xiaodan</creator><creator>Möser, Christin</creator><creator>Grundmeier, Guido</creator><creator>Liedl, Tim</creator><creator>Heuer‐Jungemann, Amelie</creator><creator>Smith, David M.</creator><creator>Keller, Adrian</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7139-3110</orcidid></search><sort><creationdate>20200401</creationdate><title>Cryopreservation of DNA Origami Nanostructures</title><author>Xin, Yang ; Kielar, Charlotte ; Zhu, Siqi ; Sikeler, Christoph ; Xu, Xiaodan ; Möser, Christin ; Grundmeier, Guido ; Liedl, Tim ; Heuer‐Jungemann, Amelie ; Smith, David M. ; Keller, Adrian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4139-dfa57e7f65f26d30d80332848d3db53ff5d11f79d5c0fce4e663b1c644cba8e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cryopreservation</topic><topic>Cryopreservation - methods</topic><topic>Cryoprotectants</topic><topic>Cryoprotective Agents - pharmacology</topic><topic>Crystal structure</topic><topic>Damage detection</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - drug effects</topic><topic>DNA Damage</topic><topic>DNA origami</topic><topic>freeze damage</topic><topic>Freeze thaw cycles</topic><topic>Freezing</topic><topic>Glycerol - pharmacology</topic><topic>Ice crystals</topic><topic>Ice formation</topic><topic>Nanostructure</topic><topic>nanostructures</topic><topic>Nanostructures - chemistry</topic><topic>Nanotechnology</topic><topic>Shape effects</topic><topic>Structural integrity</topic><topic>Trehalose</topic><topic>Trehalose - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xin, Yang</creatorcontrib><creatorcontrib>Kielar, Charlotte</creatorcontrib><creatorcontrib>Zhu, Siqi</creatorcontrib><creatorcontrib>Sikeler, Christoph</creatorcontrib><creatorcontrib>Xu, Xiaodan</creatorcontrib><creatorcontrib>Möser, Christin</creatorcontrib><creatorcontrib>Grundmeier, Guido</creatorcontrib><creatorcontrib>Liedl, Tim</creatorcontrib><creatorcontrib>Heuer‐Jungemann, Amelie</creatorcontrib><creatorcontrib>Smith, David M.</creatorcontrib><creatorcontrib>Keller, Adrian</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xin, Yang</au><au>Kielar, Charlotte</au><au>Zhu, Siqi</au><au>Sikeler, Christoph</au><au>Xu, Xiaodan</au><au>Möser, Christin</au><au>Grundmeier, Guido</au><au>Liedl, Tim</au><au>Heuer‐Jungemann, Amelie</au><au>Smith, David M.</au><au>Keller, Adrian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryopreservation of DNA Origami Nanostructures</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>16</volume><issue>13</issue><spage>e1905959</spage><epage>n/a</epage><pages>e1905959-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Although DNA origami nanostructures have found their way into numerous fields of fundamental and applied research, they often suffer from rather limited stability when subjected to environments that differ from the employed assembly conditions, that is, suspended in Mg2+‐containing buffer at moderate temperatures. Here, means for efficient cryopreservation of 2D and 3D DNA origami nanostructures and, in particular, the effect of repeated freezing and thawing cycles are investigated. It is found that, while the 2D DNA origami nanostructures maintain their structural integrity over at least 32 freeze–thaw cycles, ice crystal formation makes the DNA origami gradually more sensitive toward harsh sample treatment conditions. Whereas no freeze damage could be detected in 3D DNA origami nanostructures subjected to 32 freeze–thaw cycles, 1000 freeze–thaw cycles result in significant fragmentation. The cryoprotectants glycerol and trehalose are found to efficiently protect the DNA origami nanostructures against freeze damage at concentrations between 0.2 × 10−3 and 200 × 10−3 m and without any negative effects on DNA origami shape. This work thus provides a basis for the long‐term storage of DNA origami nanostructures, which is an important prerequisite for various technological and medical applications. The stability of 2D and 3D DNA origami nanostructures subjected to repeated freeze–thaw cycles is investigated at both −20 and −196 °C. While being surprisingly stable under these conditions, ice crystal formation nevertheless gradually compromises the structural integrity of the DNA origami. Freeze damage can be suppressed by low concentrations of the cryoprotectants glycerol and trehalose.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32130783</pmid><doi>10.1002/smll.201905959</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7139-3110</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2020-04, Vol.16 (13), p.e1905959-n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_journals_2385723590
source Wiley
subjects Cryopreservation
Cryopreservation - methods
Cryoprotectants
Cryoprotective Agents - pharmacology
Crystal structure
Damage detection
Deoxyribonucleic acid
DNA
DNA - chemistry
DNA - drug effects
DNA Damage
DNA origami
freeze damage
Freeze thaw cycles
Freezing
Glycerol - pharmacology
Ice crystals
Ice formation
Nanostructure
nanostructures
Nanostructures - chemistry
Nanotechnology
Shape effects
Structural integrity
Trehalose
Trehalose - pharmacology
title Cryopreservation of DNA Origami Nanostructures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A14%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryopreservation%20of%20DNA%20Origami%20Nanostructures&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Xin,%20Yang&rft.date=2020-04-01&rft.volume=16&rft.issue=13&rft.spage=e1905959&rft.epage=n/a&rft.pages=e1905959-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201905959&rft_dat=%3Cproquest_cross%3E2385723590%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4139-dfa57e7f65f26d30d80332848d3db53ff5d11f79d5c0fce4e663b1c644cba8e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2385723590&rft_id=info:pmid/32130783&rfr_iscdi=true