Loading…
Cryopreservation of DNA Origami Nanostructures
Although DNA origami nanostructures have found their way into numerous fields of fundamental and applied research, they often suffer from rather limited stability when subjected to environments that differ from the employed assembly conditions, that is, suspended in Mg2+‐containing buffer at moderat...
Saved in:
Published in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2020-04, Vol.16 (13), p.e1905959-n/a |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4139-dfa57e7f65f26d30d80332848d3db53ff5d11f79d5c0fce4e663b1c644cba8e13 |
---|---|
cites | cdi_FETCH-LOGICAL-c4139-dfa57e7f65f26d30d80332848d3db53ff5d11f79d5c0fce4e663b1c644cba8e13 |
container_end_page | n/a |
container_issue | 13 |
container_start_page | e1905959 |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 16 |
creator | Xin, Yang Kielar, Charlotte Zhu, Siqi Sikeler, Christoph Xu, Xiaodan Möser, Christin Grundmeier, Guido Liedl, Tim Heuer‐Jungemann, Amelie Smith, David M. Keller, Adrian |
description | Although DNA origami nanostructures have found their way into numerous fields of fundamental and applied research, they often suffer from rather limited stability when subjected to environments that differ from the employed assembly conditions, that is, suspended in Mg2+‐containing buffer at moderate temperatures. Here, means for efficient cryopreservation of 2D and 3D DNA origami nanostructures and, in particular, the effect of repeated freezing and thawing cycles are investigated. It is found that, while the 2D DNA origami nanostructures maintain their structural integrity over at least 32 freeze–thaw cycles, ice crystal formation makes the DNA origami gradually more sensitive toward harsh sample treatment conditions. Whereas no freeze damage could be detected in 3D DNA origami nanostructures subjected to 32 freeze–thaw cycles, 1000 freeze–thaw cycles result in significant fragmentation. The cryoprotectants glycerol and trehalose are found to efficiently protect the DNA origami nanostructures against freeze damage at concentrations between 0.2 × 10−3 and 200 × 10−3 m and without any negative effects on DNA origami shape. This work thus provides a basis for the long‐term storage of DNA origami nanostructures, which is an important prerequisite for various technological and medical applications.
The stability of 2D and 3D DNA origami nanostructures subjected to repeated freeze–thaw cycles is investigated at both −20 and −196 °C. While being surprisingly stable under these conditions, ice crystal formation nevertheless gradually compromises the structural integrity of the DNA origami. Freeze damage can be suppressed by low concentrations of the cryoprotectants glycerol and trehalose. |
doi_str_mv | 10.1002/smll.201905959 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2385723590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2385723590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4139-dfa57e7f65f26d30d80332848d3db53ff5d11f79d5c0fce4e663b1c644cba8e13</originalsourceid><addsrcrecordid>eNqFkD1PwzAQQC0EoqWwMqJIzAm2L3bssSrlQwrtAMxWEtsoVVIXOwH135OqpYxMd8O7d9JD6JrghGBM70LbNAnFRGImmTxBY8IJxFxQeXrcCR6hixBWGAOhaXaORkAJ4EzAGCUzv3Ubb4LxX0VXu3XkbHS_mEZLX38UbR0tirULne-rrh-oS3RmiyaYq8OcoPeH-dvsKc6Xj8-zaR5XKQEZa1uwzGSWM0u5BqwFBqAiFRp0ycBapgmxmdSswrYyqeEcSlLxNK3KQhgCE3S79268--xN6NTK9X49vFQUBMsoMIkHKtlTlXcheGPVxtdt4beKYLXLo3Z51DHPcHBz0PZla_QR_-0xAHIPfNeN2f6jU68vef4n_wGjtnEJ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2385723590</pqid></control><display><type>article</type><title>Cryopreservation of DNA Origami Nanostructures</title><source>Wiley</source><creator>Xin, Yang ; Kielar, Charlotte ; Zhu, Siqi ; Sikeler, Christoph ; Xu, Xiaodan ; Möser, Christin ; Grundmeier, Guido ; Liedl, Tim ; Heuer‐Jungemann, Amelie ; Smith, David M. ; Keller, Adrian</creator><creatorcontrib>Xin, Yang ; Kielar, Charlotte ; Zhu, Siqi ; Sikeler, Christoph ; Xu, Xiaodan ; Möser, Christin ; Grundmeier, Guido ; Liedl, Tim ; Heuer‐Jungemann, Amelie ; Smith, David M. ; Keller, Adrian</creatorcontrib><description>Although DNA origami nanostructures have found their way into numerous fields of fundamental and applied research, they often suffer from rather limited stability when subjected to environments that differ from the employed assembly conditions, that is, suspended in Mg2+‐containing buffer at moderate temperatures. Here, means for efficient cryopreservation of 2D and 3D DNA origami nanostructures and, in particular, the effect of repeated freezing and thawing cycles are investigated. It is found that, while the 2D DNA origami nanostructures maintain their structural integrity over at least 32 freeze–thaw cycles, ice crystal formation makes the DNA origami gradually more sensitive toward harsh sample treatment conditions. Whereas no freeze damage could be detected in 3D DNA origami nanostructures subjected to 32 freeze–thaw cycles, 1000 freeze–thaw cycles result in significant fragmentation. The cryoprotectants glycerol and trehalose are found to efficiently protect the DNA origami nanostructures against freeze damage at concentrations between 0.2 × 10−3 and 200 × 10−3 m and without any negative effects on DNA origami shape. This work thus provides a basis for the long‐term storage of DNA origami nanostructures, which is an important prerequisite for various technological and medical applications.
The stability of 2D and 3D DNA origami nanostructures subjected to repeated freeze–thaw cycles is investigated at both −20 and −196 °C. While being surprisingly stable under these conditions, ice crystal formation nevertheless gradually compromises the structural integrity of the DNA origami. Freeze damage can be suppressed by low concentrations of the cryoprotectants glycerol and trehalose.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201905959</identifier><identifier>PMID: 32130783</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Cryopreservation ; Cryopreservation - methods ; Cryoprotectants ; Cryoprotective Agents - pharmacology ; Crystal structure ; Damage detection ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA - drug effects ; DNA Damage ; DNA origami ; freeze damage ; Freeze thaw cycles ; Freezing ; Glycerol - pharmacology ; Ice crystals ; Ice formation ; Nanostructure ; nanostructures ; Nanostructures - chemistry ; Nanotechnology ; Shape effects ; Structural integrity ; Trehalose ; Trehalose - pharmacology</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2020-04, Vol.16 (13), p.e1905959-n/a</ispartof><rights>2020 The Authors. Published by WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2020 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4139-dfa57e7f65f26d30d80332848d3db53ff5d11f79d5c0fce4e663b1c644cba8e13</citedby><cites>FETCH-LOGICAL-c4139-dfa57e7f65f26d30d80332848d3db53ff5d11f79d5c0fce4e663b1c644cba8e13</cites><orcidid>0000-0001-7139-3110</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32130783$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xin, Yang</creatorcontrib><creatorcontrib>Kielar, Charlotte</creatorcontrib><creatorcontrib>Zhu, Siqi</creatorcontrib><creatorcontrib>Sikeler, Christoph</creatorcontrib><creatorcontrib>Xu, Xiaodan</creatorcontrib><creatorcontrib>Möser, Christin</creatorcontrib><creatorcontrib>Grundmeier, Guido</creatorcontrib><creatorcontrib>Liedl, Tim</creatorcontrib><creatorcontrib>Heuer‐Jungemann, Amelie</creatorcontrib><creatorcontrib>Smith, David M.</creatorcontrib><creatorcontrib>Keller, Adrian</creatorcontrib><title>Cryopreservation of DNA Origami Nanostructures</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Although DNA origami nanostructures have found their way into numerous fields of fundamental and applied research, they often suffer from rather limited stability when subjected to environments that differ from the employed assembly conditions, that is, suspended in Mg2+‐containing buffer at moderate temperatures. Here, means for efficient cryopreservation of 2D and 3D DNA origami nanostructures and, in particular, the effect of repeated freezing and thawing cycles are investigated. It is found that, while the 2D DNA origami nanostructures maintain their structural integrity over at least 32 freeze–thaw cycles, ice crystal formation makes the DNA origami gradually more sensitive toward harsh sample treatment conditions. Whereas no freeze damage could be detected in 3D DNA origami nanostructures subjected to 32 freeze–thaw cycles, 1000 freeze–thaw cycles result in significant fragmentation. The cryoprotectants glycerol and trehalose are found to efficiently protect the DNA origami nanostructures against freeze damage at concentrations between 0.2 × 10−3 and 200 × 10−3 m and without any negative effects on DNA origami shape. This work thus provides a basis for the long‐term storage of DNA origami nanostructures, which is an important prerequisite for various technological and medical applications.
The stability of 2D and 3D DNA origami nanostructures subjected to repeated freeze–thaw cycles is investigated at both −20 and −196 °C. While being surprisingly stable under these conditions, ice crystal formation nevertheless gradually compromises the structural integrity of the DNA origami. Freeze damage can be suppressed by low concentrations of the cryoprotectants glycerol and trehalose.</description><subject>Cryopreservation</subject><subject>Cryopreservation - methods</subject><subject>Cryoprotectants</subject><subject>Cryoprotective Agents - pharmacology</subject><subject>Crystal structure</subject><subject>Damage detection</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - drug effects</subject><subject>DNA Damage</subject><subject>DNA origami</subject><subject>freeze damage</subject><subject>Freeze thaw cycles</subject><subject>Freezing</subject><subject>Glycerol - pharmacology</subject><subject>Ice crystals</subject><subject>Ice formation</subject><subject>Nanostructure</subject><subject>nanostructures</subject><subject>Nanostructures - chemistry</subject><subject>Nanotechnology</subject><subject>Shape effects</subject><subject>Structural integrity</subject><subject>Trehalose</subject><subject>Trehalose - pharmacology</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNqFkD1PwzAQQC0EoqWwMqJIzAm2L3bssSrlQwrtAMxWEtsoVVIXOwH135OqpYxMd8O7d9JD6JrghGBM70LbNAnFRGImmTxBY8IJxFxQeXrcCR6hixBWGAOhaXaORkAJ4EzAGCUzv3Ubb4LxX0VXu3XkbHS_mEZLX38UbR0tirULne-rrh-oS3RmiyaYq8OcoPeH-dvsKc6Xj8-zaR5XKQEZa1uwzGSWM0u5BqwFBqAiFRp0ycBapgmxmdSswrYyqeEcSlLxNK3KQhgCE3S79268--xN6NTK9X49vFQUBMsoMIkHKtlTlXcheGPVxtdt4beKYLXLo3Z51DHPcHBz0PZla_QR_-0xAHIPfNeN2f6jU68vef4n_wGjtnEJ</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Xin, Yang</creator><creator>Kielar, Charlotte</creator><creator>Zhu, Siqi</creator><creator>Sikeler, Christoph</creator><creator>Xu, Xiaodan</creator><creator>Möser, Christin</creator><creator>Grundmeier, Guido</creator><creator>Liedl, Tim</creator><creator>Heuer‐Jungemann, Amelie</creator><creator>Smith, David M.</creator><creator>Keller, Adrian</creator><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>WIN</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-7139-3110</orcidid></search><sort><creationdate>20200401</creationdate><title>Cryopreservation of DNA Origami Nanostructures</title><author>Xin, Yang ; Kielar, Charlotte ; Zhu, Siqi ; Sikeler, Christoph ; Xu, Xiaodan ; Möser, Christin ; Grundmeier, Guido ; Liedl, Tim ; Heuer‐Jungemann, Amelie ; Smith, David M. ; Keller, Adrian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4139-dfa57e7f65f26d30d80332848d3db53ff5d11f79d5c0fce4e663b1c644cba8e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Cryopreservation</topic><topic>Cryopreservation - methods</topic><topic>Cryoprotectants</topic><topic>Cryoprotective Agents - pharmacology</topic><topic>Crystal structure</topic><topic>Damage detection</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - drug effects</topic><topic>DNA Damage</topic><topic>DNA origami</topic><topic>freeze damage</topic><topic>Freeze thaw cycles</topic><topic>Freezing</topic><topic>Glycerol - pharmacology</topic><topic>Ice crystals</topic><topic>Ice formation</topic><topic>Nanostructure</topic><topic>nanostructures</topic><topic>Nanostructures - chemistry</topic><topic>Nanotechnology</topic><topic>Shape effects</topic><topic>Structural integrity</topic><topic>Trehalose</topic><topic>Trehalose - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xin, Yang</creatorcontrib><creatorcontrib>Kielar, Charlotte</creatorcontrib><creatorcontrib>Zhu, Siqi</creatorcontrib><creatorcontrib>Sikeler, Christoph</creatorcontrib><creatorcontrib>Xu, Xiaodan</creatorcontrib><creatorcontrib>Möser, Christin</creatorcontrib><creatorcontrib>Grundmeier, Guido</creatorcontrib><creatorcontrib>Liedl, Tim</creatorcontrib><creatorcontrib>Heuer‐Jungemann, Amelie</creatorcontrib><creatorcontrib>Smith, David M.</creatorcontrib><creatorcontrib>Keller, Adrian</creatorcontrib><collection>Open Access: Wiley-Blackwell Open Access Journals</collection><collection>Wiley Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xin, Yang</au><au>Kielar, Charlotte</au><au>Zhu, Siqi</au><au>Sikeler, Christoph</au><au>Xu, Xiaodan</au><au>Möser, Christin</au><au>Grundmeier, Guido</au><au>Liedl, Tim</au><au>Heuer‐Jungemann, Amelie</au><au>Smith, David M.</au><au>Keller, Adrian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cryopreservation of DNA Origami Nanostructures</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2020-04-01</date><risdate>2020</risdate><volume>16</volume><issue>13</issue><spage>e1905959</spage><epage>n/a</epage><pages>e1905959-n/a</pages><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Although DNA origami nanostructures have found their way into numerous fields of fundamental and applied research, they often suffer from rather limited stability when subjected to environments that differ from the employed assembly conditions, that is, suspended in Mg2+‐containing buffer at moderate temperatures. Here, means for efficient cryopreservation of 2D and 3D DNA origami nanostructures and, in particular, the effect of repeated freezing and thawing cycles are investigated. It is found that, while the 2D DNA origami nanostructures maintain their structural integrity over at least 32 freeze–thaw cycles, ice crystal formation makes the DNA origami gradually more sensitive toward harsh sample treatment conditions. Whereas no freeze damage could be detected in 3D DNA origami nanostructures subjected to 32 freeze–thaw cycles, 1000 freeze–thaw cycles result in significant fragmentation. The cryoprotectants glycerol and trehalose are found to efficiently protect the DNA origami nanostructures against freeze damage at concentrations between 0.2 × 10−3 and 200 × 10−3 m and without any negative effects on DNA origami shape. This work thus provides a basis for the long‐term storage of DNA origami nanostructures, which is an important prerequisite for various technological and medical applications.
The stability of 2D and 3D DNA origami nanostructures subjected to repeated freeze–thaw cycles is investigated at both −20 and −196 °C. While being surprisingly stable under these conditions, ice crystal formation nevertheless gradually compromises the structural integrity of the DNA origami. Freeze damage can be suppressed by low concentrations of the cryoprotectants glycerol and trehalose.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>32130783</pmid><doi>10.1002/smll.201905959</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7139-3110</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2020-04, Vol.16 (13), p.e1905959-n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_journals_2385723590 |
source | Wiley |
subjects | Cryopreservation Cryopreservation - methods Cryoprotectants Cryoprotective Agents - pharmacology Crystal structure Damage detection Deoxyribonucleic acid DNA DNA - chemistry DNA - drug effects DNA Damage DNA origami freeze damage Freeze thaw cycles Freezing Glycerol - pharmacology Ice crystals Ice formation Nanostructure nanostructures Nanostructures - chemistry Nanotechnology Shape effects Structural integrity Trehalose Trehalose - pharmacology |
title | Cryopreservation of DNA Origami Nanostructures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A14%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cryopreservation%20of%20DNA%20Origami%20Nanostructures&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Xin,%20Yang&rft.date=2020-04-01&rft.volume=16&rft.issue=13&rft.spage=e1905959&rft.epage=n/a&rft.pages=e1905959-n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201905959&rft_dat=%3Cproquest_cross%3E2385723590%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4139-dfa57e7f65f26d30d80332848d3db53ff5d11f79d5c0fce4e663b1c644cba8e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2385723590&rft_id=info:pmid/32130783&rfr_iscdi=true |