Loading…
Contrast-to-noise ratio analysis of microscopic diffusion anisotropy indices in q-space trajectory imaging
Diffusion anisotropy in diffusion tensor imaging (DTI) is commonly quantified with normalized diffusion anisotropy indices (DAIs). Most often, the fractional anisotropy (FA) is used, but several alternative DAIs have been introduced in attempts to maximize the contrast-to-noise ratio (CNR) in diffus...
Saved in:
Published in: | arXiv.org 2020-04 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Martin, Jan Endt, Sebastian Wetscherek, Andreas Tristan Anselm Kuder Doerfler, Arnd Uder, Michael Hensel, Bernhard Laun, Frederik Bernd |
description | Diffusion anisotropy in diffusion tensor imaging (DTI) is commonly quantified with normalized diffusion anisotropy indices (DAIs). Most often, the fractional anisotropy (FA) is used, but several alternative DAIs have been introduced in attempts to maximize the contrast-to-noise ratio (CNR) in diffusion anisotropy maps. Examples include the scaled relative anisotropy (sRA), the gamma variate anisotropy index (GV), the surface anisotropy (UAsurf), and the lattice index (LI). With the advent of multidimensional diffusion encoding it became possible to determine the presence of microscopic diffusion anisotropy in a voxel, which is theoretically independent of orientation coherence. In accordance with DTI, the microscopic anisotropy is typically quantified by the microscopic fractional anisotropy (uFA). In this work, in addition to the uFA, the four microscopic diffusion anisotropy indices (uDAIs) usRA, uGV, uUAsurf, and uLI are defined in analogy to the respective DAIs by means of the average diffusion tensor and the covariance tensor. Simulations with three representative distributions of microscopic diffusion tensors revealed distinct CNR differences when differentiating between isotropic and microscopically anisotropic diffusion. q-Space trajectory imaging (QTI) was employed to acquire brain in-vivo maps of all indices. For this purpose, a 15 min protocol featuring linear, planar, and spherical tensor encoding was used. The resulting maps were of good quality and exhibited different contrasts, e.g. between gray and white matter. This indicates that it may be beneficial to use more than one uDAI in future investigational studies. |
doi_str_mv | 10.48550/arxiv.2004.00892 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2385864832</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2385864832</sourcerecordid><originalsourceid>FETCH-LOGICAL-a522-d27475adfd9f4675de2dde94d9934b0908aa3ef680996e39824382e56e150c263</originalsourceid><addsrcrecordid>eNotj0tLAzEURoMgWGp_gLuA69TMzWOSpRRfUHDTfYl5lAztZJqbiv33DujqLM7HgY-Qh46vpVGKP7n6k7_XwLlcc24s3JAFCNExIwHuyApx4JyD7kEpsSDDpoytOmysFTaWjJFW13KhbnTHK2akJdFT9rWgL1P2NOSULpjLOC8yllbLdKV5DNlHnEnPDCfnI52jQ_St1Nme3CGPh3tym9wR4-qfS7J7fdlt3tn28-1j87xlTgGwAL3slQsp2CR1r0KEEKKVwVohv7jlxjkRkzbcWh2FNSCFgah07BT3oMWSPP5lp1rOl4htP5RLnd_gHoRRRksjQPwCAEZa-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2385864832</pqid></control><display><type>article</type><title>Contrast-to-noise ratio analysis of microscopic diffusion anisotropy indices in q-space trajectory imaging</title><source>Publicly Available Content (ProQuest)</source><creator>Martin, Jan ; Endt, Sebastian ; Wetscherek, Andreas ; Tristan Anselm Kuder ; Doerfler, Arnd ; Uder, Michael ; Hensel, Bernhard ; Laun, Frederik Bernd</creator><creatorcontrib>Martin, Jan ; Endt, Sebastian ; Wetscherek, Andreas ; Tristan Anselm Kuder ; Doerfler, Arnd ; Uder, Michael ; Hensel, Bernhard ; Laun, Frederik Bernd</creatorcontrib><description>Diffusion anisotropy in diffusion tensor imaging (DTI) is commonly quantified with normalized diffusion anisotropy indices (DAIs). Most often, the fractional anisotropy (FA) is used, but several alternative DAIs have been introduced in attempts to maximize the contrast-to-noise ratio (CNR) in diffusion anisotropy maps. Examples include the scaled relative anisotropy (sRA), the gamma variate anisotropy index (GV), the surface anisotropy (UAsurf), and the lattice index (LI). With the advent of multidimensional diffusion encoding it became possible to determine the presence of microscopic diffusion anisotropy in a voxel, which is theoretically independent of orientation coherence. In accordance with DTI, the microscopic anisotropy is typically quantified by the microscopic fractional anisotropy (uFA). In this work, in addition to the uFA, the four microscopic diffusion anisotropy indices (uDAIs) usRA, uGV, uUAsurf, and uLI are defined in analogy to the respective DAIs by means of the average diffusion tensor and the covariance tensor. Simulations with three representative distributions of microscopic diffusion tensors revealed distinct CNR differences when differentiating between isotropic and microscopically anisotropic diffusion. q-Space trajectory imaging (QTI) was employed to acquire brain in-vivo maps of all indices. For this purpose, a 15 min protocol featuring linear, planar, and spherical tensor encoding was used. The resulting maps were of good quality and exhibited different contrasts, e.g. between gray and white matter. This indicates that it may be beneficial to use more than one uDAI in future investigational studies.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2004.00892</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Anisotropy ; Covariance ; Diffusion ; Imaging ; Mathematical analysis ; Tensors</subject><ispartof>arXiv.org, 2020-04</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2385864832?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Martin, Jan</creatorcontrib><creatorcontrib>Endt, Sebastian</creatorcontrib><creatorcontrib>Wetscherek, Andreas</creatorcontrib><creatorcontrib>Tristan Anselm Kuder</creatorcontrib><creatorcontrib>Doerfler, Arnd</creatorcontrib><creatorcontrib>Uder, Michael</creatorcontrib><creatorcontrib>Hensel, Bernhard</creatorcontrib><creatorcontrib>Laun, Frederik Bernd</creatorcontrib><title>Contrast-to-noise ratio analysis of microscopic diffusion anisotropy indices in q-space trajectory imaging</title><title>arXiv.org</title><description>Diffusion anisotropy in diffusion tensor imaging (DTI) is commonly quantified with normalized diffusion anisotropy indices (DAIs). Most often, the fractional anisotropy (FA) is used, but several alternative DAIs have been introduced in attempts to maximize the contrast-to-noise ratio (CNR) in diffusion anisotropy maps. Examples include the scaled relative anisotropy (sRA), the gamma variate anisotropy index (GV), the surface anisotropy (UAsurf), and the lattice index (LI). With the advent of multidimensional diffusion encoding it became possible to determine the presence of microscopic diffusion anisotropy in a voxel, which is theoretically independent of orientation coherence. In accordance with DTI, the microscopic anisotropy is typically quantified by the microscopic fractional anisotropy (uFA). In this work, in addition to the uFA, the four microscopic diffusion anisotropy indices (uDAIs) usRA, uGV, uUAsurf, and uLI are defined in analogy to the respective DAIs by means of the average diffusion tensor and the covariance tensor. Simulations with three representative distributions of microscopic diffusion tensors revealed distinct CNR differences when differentiating between isotropic and microscopically anisotropic diffusion. q-Space trajectory imaging (QTI) was employed to acquire brain in-vivo maps of all indices. For this purpose, a 15 min protocol featuring linear, planar, and spherical tensor encoding was used. The resulting maps were of good quality and exhibited different contrasts, e.g. between gray and white matter. This indicates that it may be beneficial to use more than one uDAI in future investigational studies.</description><subject>Anisotropy</subject><subject>Covariance</subject><subject>Diffusion</subject><subject>Imaging</subject><subject>Mathematical analysis</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj0tLAzEURoMgWGp_gLuA69TMzWOSpRRfUHDTfYl5lAztZJqbiv33DujqLM7HgY-Qh46vpVGKP7n6k7_XwLlcc24s3JAFCNExIwHuyApx4JyD7kEpsSDDpoytOmysFTaWjJFW13KhbnTHK2akJdFT9rWgL1P2NOSULpjLOC8yllbLdKV5DNlHnEnPDCfnI52jQ_St1Nme3CGPh3tym9wR4-qfS7J7fdlt3tn28-1j87xlTgGwAL3slQsp2CR1r0KEEKKVwVohv7jlxjkRkzbcWh2FNSCFgah07BT3oMWSPP5lp1rOl4htP5RLnd_gHoRRRksjQPwCAEZa-Q</recordid><startdate>20200402</startdate><enddate>20200402</enddate><creator>Martin, Jan</creator><creator>Endt, Sebastian</creator><creator>Wetscherek, Andreas</creator><creator>Tristan Anselm Kuder</creator><creator>Doerfler, Arnd</creator><creator>Uder, Michael</creator><creator>Hensel, Bernhard</creator><creator>Laun, Frederik Bernd</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200402</creationdate><title>Contrast-to-noise ratio analysis of microscopic diffusion anisotropy indices in q-space trajectory imaging</title><author>Martin, Jan ; Endt, Sebastian ; Wetscherek, Andreas ; Tristan Anselm Kuder ; Doerfler, Arnd ; Uder, Michael ; Hensel, Bernhard ; Laun, Frederik Bernd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a522-d27475adfd9f4675de2dde94d9934b0908aa3ef680996e39824382e56e150c263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Anisotropy</topic><topic>Covariance</topic><topic>Diffusion</topic><topic>Imaging</topic><topic>Mathematical analysis</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Martin, Jan</creatorcontrib><creatorcontrib>Endt, Sebastian</creatorcontrib><creatorcontrib>Wetscherek, Andreas</creatorcontrib><creatorcontrib>Tristan Anselm Kuder</creatorcontrib><creatorcontrib>Doerfler, Arnd</creatorcontrib><creatorcontrib>Uder, Michael</creatorcontrib><creatorcontrib>Hensel, Bernhard</creatorcontrib><creatorcontrib>Laun, Frederik Bernd</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Martin, Jan</au><au>Endt, Sebastian</au><au>Wetscherek, Andreas</au><au>Tristan Anselm Kuder</au><au>Doerfler, Arnd</au><au>Uder, Michael</au><au>Hensel, Bernhard</au><au>Laun, Frederik Bernd</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Contrast-to-noise ratio analysis of microscopic diffusion anisotropy indices in q-space trajectory imaging</atitle><jtitle>arXiv.org</jtitle><date>2020-04-02</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Diffusion anisotropy in diffusion tensor imaging (DTI) is commonly quantified with normalized diffusion anisotropy indices (DAIs). Most often, the fractional anisotropy (FA) is used, but several alternative DAIs have been introduced in attempts to maximize the contrast-to-noise ratio (CNR) in diffusion anisotropy maps. Examples include the scaled relative anisotropy (sRA), the gamma variate anisotropy index (GV), the surface anisotropy (UAsurf), and the lattice index (LI). With the advent of multidimensional diffusion encoding it became possible to determine the presence of microscopic diffusion anisotropy in a voxel, which is theoretically independent of orientation coherence. In accordance with DTI, the microscopic anisotropy is typically quantified by the microscopic fractional anisotropy (uFA). In this work, in addition to the uFA, the four microscopic diffusion anisotropy indices (uDAIs) usRA, uGV, uUAsurf, and uLI are defined in analogy to the respective DAIs by means of the average diffusion tensor and the covariance tensor. Simulations with three representative distributions of microscopic diffusion tensors revealed distinct CNR differences when differentiating between isotropic and microscopically anisotropic diffusion. q-Space trajectory imaging (QTI) was employed to acquire brain in-vivo maps of all indices. For this purpose, a 15 min protocol featuring linear, planar, and spherical tensor encoding was used. The resulting maps were of good quality and exhibited different contrasts, e.g. between gray and white matter. This indicates that it may be beneficial to use more than one uDAI in future investigational studies.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2004.00892</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2385864832 |
source | Publicly Available Content (ProQuest) |
subjects | Anisotropy Covariance Diffusion Imaging Mathematical analysis Tensors |
title | Contrast-to-noise ratio analysis of microscopic diffusion anisotropy indices in q-space trajectory imaging |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A54%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Contrast-to-noise%20ratio%20analysis%20of%20microscopic%20diffusion%20anisotropy%20indices%20in%20q-space%20trajectory%20imaging&rft.jtitle=arXiv.org&rft.au=Martin,%20Jan&rft.date=2020-04-02&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2004.00892&rft_dat=%3Cproquest%3E2385864832%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a522-d27475adfd9f4675de2dde94d9934b0908aa3ef680996e39824382e56e150c263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2385864832&rft_id=info:pmid/&rfr_iscdi=true |