Loading…
On the capacity of the Gini index to represent income distributions
Almost all governmental and international agencies use the Gini index to summarize income inequality in a nation or the world. The index has been criticized because it can have the same value for two different distributions. It will be seen that other commonly used summary measures of inequality are...
Saved in:
Published in: | Metron (Rome) 2020-04, Vol.78 (1), p.61-69 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-861231c844b053ce3decc5081f98281d8bcf9e32a674a8cbcaf976f15e9f653d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-861231c844b053ce3decc5081f98281d8bcf9e32a674a8cbcaf976f15e9f653d3 |
container_end_page | 69 |
container_issue | 1 |
container_start_page | 61 |
container_title | Metron (Rome) |
container_volume | 78 |
creator | Liu, Yang Gastwirth, Joseph L. |
description | Almost all governmental and international agencies use the Gini index to summarize income inequality in a nation or the world. The index has been criticized because it can have the same value for two different distributions. It will be seen that other commonly used summary measures of inequality are subject to the same criticism. The Gini index has the advantage that it is able to distinguish between two distributions that have identical integer valued generalized entropy measures. Because no single measure can fully summarize a distribution, researchers should consider combining the Gini index with another measure appropriate for the topic being studied. |
doi_str_mv | 10.1007/s40300-020-00164-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2385944260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2385944260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-861231c844b053ce3decc5081f98281d8bcf9e32a674a8cbcaf976f15e9f653d3</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJg0f4BTwHPq5OPTbNHKVqFQi8K3kI2O9EUu7smKdh_b-wK3hwYhhneezPzCLlicMMAFrdJggCogJcEpmSlT8iMc80q1dSvp2QGwFXFJJfnZJ7SFkpoXjdSzchy09P8jtTZ0bqQD3Twx34V-kBD3-EXzQONOEZM2OcycsMOaRdSjqHd5zD06ZKcefuRcP5bL8jLw_3z8rFab1ZPy7t15QRrcqUV44I5LWULtXAoOnSuBs18o8uxnW6db1BwqxbSatc665uF8qzGxqtadOKCXE-6Yxw-95iy2Q772JeVhgtd_pFcQUHxCeXikFJEb8YYdjYeDAPz45eZ_DLFL3P0y-hCEhMpFXD_hvFP-h_WNx3EbLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2385944260</pqid></control><display><type>article</type><title>On the capacity of the Gini index to represent income distributions</title><source>Springer Nature</source><creator>Liu, Yang ; Gastwirth, Joseph L.</creator><creatorcontrib>Liu, Yang ; Gastwirth, Joseph L.</creatorcontrib><description>Almost all governmental and international agencies use the Gini index to summarize income inequality in a nation or the world. The index has been criticized because it can have the same value for two different distributions. It will be seen that other commonly used summary measures of inequality are subject to the same criticism. The Gini index has the advantage that it is able to distinguish between two distributions that have identical integer valued generalized entropy measures. Because no single measure can fully summarize a distribution, researchers should consider combining the Gini index with another measure appropriate for the topic being studied.</description><identifier>ISSN: 0026-1424</identifier><identifier>EISSN: 2281-695X</identifier><identifier>DOI: 10.1007/s40300-020-00164-8</identifier><language>eng</language><publisher>Milan: Springer Milan</publisher><subject>Income ; Mathematics and Statistics ; Statistical Theory and Methods ; Statistics</subject><ispartof>Metron (Rome), 2020-04, Vol.78 (1), p.61-69</ispartof><rights>Sapienza UniversitĂ di Roma 2020</rights><rights>Sapienza UniversitĂ di Roma 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-861231c844b053ce3decc5081f98281d8bcf9e32a674a8cbcaf976f15e9f653d3</citedby><cites>FETCH-LOGICAL-c319t-861231c844b053ce3decc5081f98281d8bcf9e32a674a8cbcaf976f15e9f653d3</cites><orcidid>0000-0002-0760-2739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Gastwirth, Joseph L.</creatorcontrib><title>On the capacity of the Gini index to represent income distributions</title><title>Metron (Rome)</title><addtitle>METRON</addtitle><description>Almost all governmental and international agencies use the Gini index to summarize income inequality in a nation or the world. The index has been criticized because it can have the same value for two different distributions. It will be seen that other commonly used summary measures of inequality are subject to the same criticism. The Gini index has the advantage that it is able to distinguish between two distributions that have identical integer valued generalized entropy measures. Because no single measure can fully summarize a distribution, researchers should consider combining the Gini index with another measure appropriate for the topic being studied.</description><subject>Income</subject><subject>Mathematics and Statistics</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><issn>0026-1424</issn><issn>2281-695X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJg0f4BTwHPq5OPTbNHKVqFQi8K3kI2O9EUu7smKdh_b-wK3hwYhhneezPzCLlicMMAFrdJggCogJcEpmSlT8iMc80q1dSvp2QGwFXFJJfnZJ7SFkpoXjdSzchy09P8jtTZ0bqQD3Twx34V-kBD3-EXzQONOEZM2OcycsMOaRdSjqHd5zD06ZKcefuRcP5bL8jLw_3z8rFab1ZPy7t15QRrcqUV44I5LWULtXAoOnSuBs18o8uxnW6db1BwqxbSatc665uF8qzGxqtadOKCXE-6Yxw-95iy2Q772JeVhgtd_pFcQUHxCeXikFJEb8YYdjYeDAPz45eZ_DLFL3P0y-hCEhMpFXD_hvFP-h_WNx3EbLw</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Liu, Yang</creator><creator>Gastwirth, Joseph L.</creator><general>Springer Milan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0760-2739</orcidid></search><sort><creationdate>20200401</creationdate><title>On the capacity of the Gini index to represent income distributions</title><author>Liu, Yang ; Gastwirth, Joseph L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-861231c844b053ce3decc5081f98281d8bcf9e32a674a8cbcaf976f15e9f653d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Income</topic><topic>Mathematics and Statistics</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Gastwirth, Joseph L.</creatorcontrib><collection>CrossRef</collection><jtitle>Metron (Rome)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yang</au><au>Gastwirth, Joseph L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the capacity of the Gini index to represent income distributions</atitle><jtitle>Metron (Rome)</jtitle><stitle>METRON</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>78</volume><issue>1</issue><spage>61</spage><epage>69</epage><pages>61-69</pages><issn>0026-1424</issn><eissn>2281-695X</eissn><abstract>Almost all governmental and international agencies use the Gini index to summarize income inequality in a nation or the world. The index has been criticized because it can have the same value for two different distributions. It will be seen that other commonly used summary measures of inequality are subject to the same criticism. The Gini index has the advantage that it is able to distinguish between two distributions that have identical integer valued generalized entropy measures. Because no single measure can fully summarize a distribution, researchers should consider combining the Gini index with another measure appropriate for the topic being studied.</abstract><cop>Milan</cop><pub>Springer Milan</pub><doi>10.1007/s40300-020-00164-8</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0760-2739</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0026-1424 |
ispartof | Metron (Rome), 2020-04, Vol.78 (1), p.61-69 |
issn | 0026-1424 2281-695X |
language | eng |
recordid | cdi_proquest_journals_2385944260 |
source | Springer Nature |
subjects | Income Mathematics and Statistics Statistical Theory and Methods Statistics |
title | On the capacity of the Gini index to represent income distributions |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A31%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20capacity%20of%20the%20Gini%20index%20to%20represent%20income%20distributions&rft.jtitle=Metron%20(Rome)&rft.au=Liu,%20Yang&rft.date=2020-04-01&rft.volume=78&rft.issue=1&rft.spage=61&rft.epage=69&rft.pages=61-69&rft.issn=0026-1424&rft.eissn=2281-695X&rft_id=info:doi/10.1007/s40300-020-00164-8&rft_dat=%3Cproquest_cross%3E2385944260%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-861231c844b053ce3decc5081f98281d8bcf9e32a674a8cbcaf976f15e9f653d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2385944260&rft_id=info:pmid/&rfr_iscdi=true |