Loading…

On the capacity of the Gini index to represent income distributions

Almost all governmental and international agencies use the Gini index to summarize income inequality in a nation or the world. The index has been criticized because it can have the same value for two different distributions. It will be seen that other commonly used summary measures of inequality are...

Full description

Saved in:
Bibliographic Details
Published in:Metron (Rome) 2020-04, Vol.78 (1), p.61-69
Main Authors: Liu, Yang, Gastwirth, Joseph L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-861231c844b053ce3decc5081f98281d8bcf9e32a674a8cbcaf976f15e9f653d3
cites cdi_FETCH-LOGICAL-c319t-861231c844b053ce3decc5081f98281d8bcf9e32a674a8cbcaf976f15e9f653d3
container_end_page 69
container_issue 1
container_start_page 61
container_title Metron (Rome)
container_volume 78
creator Liu, Yang
Gastwirth, Joseph L.
description Almost all governmental and international agencies use the Gini index to summarize income inequality in a nation or the world. The index has been criticized because it can have the same value for two different distributions. It will be seen that other commonly used summary measures of inequality are subject to the same criticism. The Gini index has the advantage that it is able to distinguish between two distributions that have identical integer valued generalized entropy measures. Because no single measure can fully summarize a distribution, researchers should consider combining the Gini index with another measure appropriate for the topic being studied.
doi_str_mv 10.1007/s40300-020-00164-8
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2385944260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2385944260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-861231c844b053ce3decc5081f98281d8bcf9e32a674a8cbcaf976f15e9f653d3</originalsourceid><addsrcrecordid>eNp9UE1LAzEQDaJg0f4BTwHPq5OPTbNHKVqFQi8K3kI2O9EUu7smKdh_b-wK3hwYhhneezPzCLlicMMAFrdJggCogJcEpmSlT8iMc80q1dSvp2QGwFXFJJfnZJ7SFkpoXjdSzchy09P8jtTZ0bqQD3Twx34V-kBD3-EXzQONOEZM2OcycsMOaRdSjqHd5zD06ZKcefuRcP5bL8jLw_3z8rFab1ZPy7t15QRrcqUV44I5LWULtXAoOnSuBs18o8uxnW6db1BwqxbSatc665uF8qzGxqtadOKCXE-6Yxw-95iy2Q772JeVhgtd_pFcQUHxCeXikFJEb8YYdjYeDAPz45eZ_DLFL3P0y-hCEhMpFXD_hvFP-h_WNx3EbLw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2385944260</pqid></control><display><type>article</type><title>On the capacity of the Gini index to represent income distributions</title><source>Springer Nature</source><creator>Liu, Yang ; Gastwirth, Joseph L.</creator><creatorcontrib>Liu, Yang ; Gastwirth, Joseph L.</creatorcontrib><description>Almost all governmental and international agencies use the Gini index to summarize income inequality in a nation or the world. The index has been criticized because it can have the same value for two different distributions. It will be seen that other commonly used summary measures of inequality are subject to the same criticism. The Gini index has the advantage that it is able to distinguish between two distributions that have identical integer valued generalized entropy measures. Because no single measure can fully summarize a distribution, researchers should consider combining the Gini index with another measure appropriate for the topic being studied.</description><identifier>ISSN: 0026-1424</identifier><identifier>EISSN: 2281-695X</identifier><identifier>DOI: 10.1007/s40300-020-00164-8</identifier><language>eng</language><publisher>Milan: Springer Milan</publisher><subject>Income ; Mathematics and Statistics ; Statistical Theory and Methods ; Statistics</subject><ispartof>Metron (Rome), 2020-04, Vol.78 (1), p.61-69</ispartof><rights>Sapienza UniversitĂ  di Roma 2020</rights><rights>Sapienza UniversitĂ  di Roma 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-861231c844b053ce3decc5081f98281d8bcf9e32a674a8cbcaf976f15e9f653d3</citedby><cites>FETCH-LOGICAL-c319t-861231c844b053ce3decc5081f98281d8bcf9e32a674a8cbcaf976f15e9f653d3</cites><orcidid>0000-0002-0760-2739</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Gastwirth, Joseph L.</creatorcontrib><title>On the capacity of the Gini index to represent income distributions</title><title>Metron (Rome)</title><addtitle>METRON</addtitle><description>Almost all governmental and international agencies use the Gini index to summarize income inequality in a nation or the world. The index has been criticized because it can have the same value for two different distributions. It will be seen that other commonly used summary measures of inequality are subject to the same criticism. The Gini index has the advantage that it is able to distinguish between two distributions that have identical integer valued generalized entropy measures. Because no single measure can fully summarize a distribution, researchers should consider combining the Gini index with another measure appropriate for the topic being studied.</description><subject>Income</subject><subject>Mathematics and Statistics</subject><subject>Statistical Theory and Methods</subject><subject>Statistics</subject><issn>0026-1424</issn><issn>2281-695X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UE1LAzEQDaJg0f4BTwHPq5OPTbNHKVqFQi8K3kI2O9EUu7smKdh_b-wK3hwYhhneezPzCLlicMMAFrdJggCogJcEpmSlT8iMc80q1dSvp2QGwFXFJJfnZJ7SFkpoXjdSzchy09P8jtTZ0bqQD3Twx34V-kBD3-EXzQONOEZM2OcycsMOaRdSjqHd5zD06ZKcefuRcP5bL8jLw_3z8rFab1ZPy7t15QRrcqUV44I5LWULtXAoOnSuBs18o8uxnW6db1BwqxbSatc665uF8qzGxqtadOKCXE-6Yxw-95iy2Q772JeVhgtd_pFcQUHxCeXikFJEb8YYdjYeDAPz45eZ_DLFL3P0y-hCEhMpFXD_hvFP-h_WNx3EbLw</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Liu, Yang</creator><creator>Gastwirth, Joseph L.</creator><general>Springer Milan</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-0760-2739</orcidid></search><sort><creationdate>20200401</creationdate><title>On the capacity of the Gini index to represent income distributions</title><author>Liu, Yang ; Gastwirth, Joseph L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-861231c844b053ce3decc5081f98281d8bcf9e32a674a8cbcaf976f15e9f653d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Income</topic><topic>Mathematics and Statistics</topic><topic>Statistical Theory and Methods</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yang</creatorcontrib><creatorcontrib>Gastwirth, Joseph L.</creatorcontrib><collection>CrossRef</collection><jtitle>Metron (Rome)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yang</au><au>Gastwirth, Joseph L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the capacity of the Gini index to represent income distributions</atitle><jtitle>Metron (Rome)</jtitle><stitle>METRON</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>78</volume><issue>1</issue><spage>61</spage><epage>69</epage><pages>61-69</pages><issn>0026-1424</issn><eissn>2281-695X</eissn><abstract>Almost all governmental and international agencies use the Gini index to summarize income inequality in a nation or the world. The index has been criticized because it can have the same value for two different distributions. It will be seen that other commonly used summary measures of inequality are subject to the same criticism. The Gini index has the advantage that it is able to distinguish between two distributions that have identical integer valued generalized entropy measures. Because no single measure can fully summarize a distribution, researchers should consider combining the Gini index with another measure appropriate for the topic being studied.</abstract><cop>Milan</cop><pub>Springer Milan</pub><doi>10.1007/s40300-020-00164-8</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-0760-2739</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0026-1424
ispartof Metron (Rome), 2020-04, Vol.78 (1), p.61-69
issn 0026-1424
2281-695X
language eng
recordid cdi_proquest_journals_2385944260
source Springer Nature
subjects Income
Mathematics and Statistics
Statistical Theory and Methods
Statistics
title On the capacity of the Gini index to represent income distributions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A31%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20capacity%20of%20the%20Gini%20index%20to%20represent%20income%20distributions&rft.jtitle=Metron%20(Rome)&rft.au=Liu,%20Yang&rft.date=2020-04-01&rft.volume=78&rft.issue=1&rft.spage=61&rft.epage=69&rft.pages=61-69&rft.issn=0026-1424&rft.eissn=2281-695X&rft_id=info:doi/10.1007/s40300-020-00164-8&rft_dat=%3Cproquest_cross%3E2385944260%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-861231c844b053ce3decc5081f98281d8bcf9e32a674a8cbcaf976f15e9f653d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2385944260&rft_id=info:pmid/&rfr_iscdi=true