Loading…

Weak saturation numbers of complete bipartite graphs in the clique

The notion of weak saturation was introduced by Bollobás in 1968. Let \(F\) and \(H\) be graphs. A spanning subgraph \(G \subseteq F\) is weakly \((F,H)\)-saturated if it contains no copy of \(H\) but there exists an ordering \(e_1,\ldots,e_t\) of \(E(F)\setminus E(G)\) such that for each \(i \in [t...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2022-03
Main Authors: Kronenberg, Gal, Martins, Taísa, Morrison, Natasha
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Kronenberg, Gal
Martins, Taísa
Morrison, Natasha
description The notion of weak saturation was introduced by Bollobás in 1968. Let \(F\) and \(H\) be graphs. A spanning subgraph \(G \subseteq F\) is weakly \((F,H)\)-saturated if it contains no copy of \(H\) but there exists an ordering \(e_1,\ldots,e_t\) of \(E(F)\setminus E(G)\) such that for each \(i \in [t]\), the graph \(G \cup \{e_1,\ldots,e_i\}\) contains a copy \(H'\) of \(H\) such that \(e_i \in H'\). Define \(wsat(F,H)\) to be the minimum number of edges in a weakly \((F,H)\)-saturated graph. In this paper, we prove for all \(t \ge 2\) and \(n \ge 3t-3\), that \(wsat(K_n,K_{t,t}) = (t-1)(n + 1 - t/2)\), and we determine the value of \(wsat(K_n,K_{t-1,t})\) as well. For fixed \(2 \le s < t\), we also obtain bounds on \(wsat(K_n,K_{s,t})\) that are asymptotically tight.
doi_str_mv 10.48550/arxiv.2004.01289
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2386620122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2386620122</sourcerecordid><originalsourceid>FETCH-LOGICAL-a522-1f2bb38b0e3c9027ca76b915101ce8ee036e9359506cd819856ff5a1e72845423</originalsourceid><addsrcrecordid>eNotj81KAzEURoMgWGofwF3A9Yw3N5NMstTiHxTcFFyWJN6xqe3MmGTEx3fArr6zOoePsRsBdWOUgjuXfuNPjQBNDQKNvWALlFJUpkG8YqucDwCAukWl5II9vJP74tmVKbkSh57308lTynzoeBhO45EKcR9Hl0qc6TO5cZ957HnZEw_H-D3RNbvs3DHT6rxLtn163K5fqs3b8-v6flM5hViJDr2XxgPJYAHb4FrtrVACRCBDBFKTlcoq0OHDCGuU7jrlBLVoGtWgXLLbf-2Yhrmay-4wTKmfizuURmuc36L8AxsnStE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386620122</pqid></control><display><type>article</type><title>Weak saturation numbers of complete bipartite graphs in the clique</title><source>ProQuest - Publicly Available Content Database</source><creator>Kronenberg, Gal ; Martins, Taísa ; Morrison, Natasha</creator><creatorcontrib>Kronenberg, Gal ; Martins, Taísa ; Morrison, Natasha</creatorcontrib><description>The notion of weak saturation was introduced by Bollobás in 1968. Let \(F\) and \(H\) be graphs. A spanning subgraph \(G \subseteq F\) is weakly \((F,H)\)-saturated if it contains no copy of \(H\) but there exists an ordering \(e_1,\ldots,e_t\) of \(E(F)\setminus E(G)\) such that for each \(i \in [t]\), the graph \(G \cup \{e_1,\ldots,e_i\}\) contains a copy \(H'\) of \(H\) such that \(e_i \in H'\). Define \(wsat(F,H)\) to be the minimum number of edges in a weakly \((F,H)\)-saturated graph. In this paper, we prove for all \(t \ge 2\) and \(n \ge 3t-3\), that \(wsat(K_n,K_{t,t}) = (t-1)(n + 1 - t/2)\), and we determine the value of \(wsat(K_n,K_{t-1,t})\) as well. For fixed \(2 \le s &lt; t\), we also obtain bounds on \(wsat(K_n,K_{s,t})\) that are asymptotically tight.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2004.01289</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Graph theory ; Graphs ; Saturation</subject><ispartof>arXiv.org, 2022-03</ispartof><rights>2022. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2386620122?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Kronenberg, Gal</creatorcontrib><creatorcontrib>Martins, Taísa</creatorcontrib><creatorcontrib>Morrison, Natasha</creatorcontrib><title>Weak saturation numbers of complete bipartite graphs in the clique</title><title>arXiv.org</title><description>The notion of weak saturation was introduced by Bollobás in 1968. Let \(F\) and \(H\) be graphs. A spanning subgraph \(G \subseteq F\) is weakly \((F,H)\)-saturated if it contains no copy of \(H\) but there exists an ordering \(e_1,\ldots,e_t\) of \(E(F)\setminus E(G)\) such that for each \(i \in [t]\), the graph \(G \cup \{e_1,\ldots,e_i\}\) contains a copy \(H'\) of \(H\) such that \(e_i \in H'\). Define \(wsat(F,H)\) to be the minimum number of edges in a weakly \((F,H)\)-saturated graph. In this paper, we prove for all \(t \ge 2\) and \(n \ge 3t-3\), that \(wsat(K_n,K_{t,t}) = (t-1)(n + 1 - t/2)\), and we determine the value of \(wsat(K_n,K_{t-1,t})\) as well. For fixed \(2 \le s &lt; t\), we also obtain bounds on \(wsat(K_n,K_{s,t})\) that are asymptotically tight.</description><subject>Graph theory</subject><subject>Graphs</subject><subject>Saturation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj81KAzEURoMgWGofwF3A9Yw3N5NMstTiHxTcFFyWJN6xqe3MmGTEx3fArr6zOoePsRsBdWOUgjuXfuNPjQBNDQKNvWALlFJUpkG8YqucDwCAukWl5II9vJP74tmVKbkSh57308lTynzoeBhO45EKcR9Hl0qc6TO5cZ957HnZEw_H-D3RNbvs3DHT6rxLtn163K5fqs3b8-v6flM5hViJDr2XxgPJYAHb4FrtrVACRCBDBFKTlcoq0OHDCGuU7jrlBLVoGtWgXLLbf-2Yhrmay-4wTKmfizuURmuc36L8AxsnStE</recordid><startdate>20220304</startdate><enddate>20220304</enddate><creator>Kronenberg, Gal</creator><creator>Martins, Taísa</creator><creator>Morrison, Natasha</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20220304</creationdate><title>Weak saturation numbers of complete bipartite graphs in the clique</title><author>Kronenberg, Gal ; Martins, Taísa ; Morrison, Natasha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a522-1f2bb38b0e3c9027ca76b915101ce8ee036e9359506cd819856ff5a1e72845423</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Graph theory</topic><topic>Graphs</topic><topic>Saturation</topic><toplevel>online_resources</toplevel><creatorcontrib>Kronenberg, Gal</creatorcontrib><creatorcontrib>Martins, Taísa</creatorcontrib><creatorcontrib>Morrison, Natasha</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest - Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kronenberg, Gal</au><au>Martins, Taísa</au><au>Morrison, Natasha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weak saturation numbers of complete bipartite graphs in the clique</atitle><jtitle>arXiv.org</jtitle><date>2022-03-04</date><risdate>2022</risdate><eissn>2331-8422</eissn><abstract>The notion of weak saturation was introduced by Bollobás in 1968. Let \(F\) and \(H\) be graphs. A spanning subgraph \(G \subseteq F\) is weakly \((F,H)\)-saturated if it contains no copy of \(H\) but there exists an ordering \(e_1,\ldots,e_t\) of \(E(F)\setminus E(G)\) such that for each \(i \in [t]\), the graph \(G \cup \{e_1,\ldots,e_i\}\) contains a copy \(H'\) of \(H\) such that \(e_i \in H'\). Define \(wsat(F,H)\) to be the minimum number of edges in a weakly \((F,H)\)-saturated graph. In this paper, we prove for all \(t \ge 2\) and \(n \ge 3t-3\), that \(wsat(K_n,K_{t,t}) = (t-1)(n + 1 - t/2)\), and we determine the value of \(wsat(K_n,K_{t-1,t})\) as well. For fixed \(2 \le s &lt; t\), we also obtain bounds on \(wsat(K_n,K_{s,t})\) that are asymptotically tight.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2004.01289</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2022-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2386620122
source ProQuest - Publicly Available Content Database
subjects Graph theory
Graphs
Saturation
title Weak saturation numbers of complete bipartite graphs in the clique
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A51%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weak%20saturation%20numbers%20of%20complete%20bipartite%20graphs%20in%20the%20clique&rft.jtitle=arXiv.org&rft.au=Kronenberg,%20Gal&rft.date=2022-03-04&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2004.01289&rft_dat=%3Cproquest%3E2386620122%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a522-1f2bb38b0e3c9027ca76b915101ce8ee036e9359506cd819856ff5a1e72845423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2386620122&rft_id=info:pmid/&rfr_iscdi=true