Loading…
FPGA-based system for artificial neural network arrhythmia classification
The automatic detection and cardiac classification are essential tasks for real-time cardiac diseases diagnosis. In this context, this paper describes a field programmable gates array (FPGA) implementation of arrhythmia recognition system, based on artificial neural network. Firstly, we have develop...
Saved in:
Published in: | Neural computing & applications 2020-04, Vol.32 (8), p.4105-4120 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-f191815449101e40e8f22c16fd11a04198bc2e033d1a177816c959313f8eb6203 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-f191815449101e40e8f22c16fd11a04198bc2e033d1a177816c959313f8eb6203 |
container_end_page | 4120 |
container_issue | 8 |
container_start_page | 4105 |
container_title | Neural computing & applications |
container_volume | 32 |
creator | Zairi, Hadjer Kedir Talha, Malika Meddah, Karim Ould Slimane, Saliha |
description | The automatic detection and cardiac classification are essential tasks for real-time cardiac diseases diagnosis. In this context, this paper describes a field programmable gates array (FPGA) implementation of arrhythmia recognition system, based on artificial neural network. Firstly, we have developed an optimized software-based medical diagnostic approach, capable of defining the best electrocardiogram (ECG) signal classes. The main advantage of this approach is the significant features minimization, compared to the existing researches, which leads to minimize the FPGA prototype size and saving energy consumption. Secondly, to provide a continuous and mobile arrhythmia monitoring system for patients, we have performed a hardware implementation. The FPGA has been referred due to their easy testing and quick implementation. The optimized approach implementation has been designed on the Nexys4 Artix7 evaluation kit using the Xilinx System Generator for DSP. In order to evaluate the performance of our proposal system, the classification performances of proposed FPGA fixed point have been compared to those obtained from the MATLAB floating point. The proposed architecture is validated on FPGA to be a customized mobile ECG classifier for long-term real-time monitoring of patients. |
doi_str_mv | 10.1007/s00521-019-04081-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2386679036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2386679036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f191815449101e40e8f22c16fd11a04198bc2e033d1a177816c959313f8eb6203</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wNWA6-h7SSaTLEuxH1DQha5DmiZ2ajtTkynSf2_aEdy5eot77n1wCLlHeESA6ikBlAwpoKYgQCEVF2SAgnPKoVSXZABa5FgKfk1uUtoAgJCqHJD55HU6okub_KpIx9T5XRHaWNjY1aF2td0WjT_E8-m-2_iZk7g-dutdbQu3tSmdMNvVbXNLroLdJn_3e4fkffL8Np7Rxct0Ph4tqOOoOxpQo8JSCI2AXoBXgTGHMqwQLQjUaumYB85XaLGqFEqnS82RB-WXkgEfkod-dx_br4NPndm0h9jkl4ZxJWWlgctMsZ5ysU0p-mD2sd7ZeDQI5qTM9MpMVmbOyozIJd6XUoabDx__pv9p_QCacG0v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386679036</pqid></control><display><type>article</type><title>FPGA-based system for artificial neural network arrhythmia classification</title><source>Springer Nature</source><creator>Zairi, Hadjer ; Kedir Talha, Malika ; Meddah, Karim ; Ould Slimane, Saliha</creator><creatorcontrib>Zairi, Hadjer ; Kedir Talha, Malika ; Meddah, Karim ; Ould Slimane, Saliha</creatorcontrib><description>The automatic detection and cardiac classification are essential tasks for real-time cardiac diseases diagnosis. In this context, this paper describes a field programmable gates array (FPGA) implementation of arrhythmia recognition system, based on artificial neural network. Firstly, we have developed an optimized software-based medical diagnostic approach, capable of defining the best electrocardiogram (ECG) signal classes. The main advantage of this approach is the significant features minimization, compared to the existing researches, which leads to minimize the FPGA prototype size and saving energy consumption. Secondly, to provide a continuous and mobile arrhythmia monitoring system for patients, we have performed a hardware implementation. The FPGA has been referred due to their easy testing and quick implementation. The optimized approach implementation has been designed on the Nexys4 Artix7 evaluation kit using the Xilinx System Generator for DSP. In order to evaluate the performance of our proposal system, the classification performances of proposed FPGA fixed point have been compared to those obtained from the MATLAB floating point. The proposed architecture is validated on FPGA to be a customized mobile ECG classifier for long-term real-time monitoring of patients.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-019-04081-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Arrhythmia ; Artificial Intelligence ; Artificial neural networks ; Cardiac arrhythmia ; Classification ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Diagnostic software ; Diagnostic systems ; Electrocardiography ; Energy conservation ; Energy consumption ; Field programmable gate arrays ; Floating point arithmetic ; Image Processing and Computer Vision ; Monitoring ; Neural networks ; Original Article ; Performance evaluation ; Probability and Statistics in Computer Science ; Real time ; Telemedicine</subject><ispartof>Neural computing & applications, 2020-04, Vol.32 (8), p.4105-4120</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f191815449101e40e8f22c16fd11a04198bc2e033d1a177816c959313f8eb6203</citedby><cites>FETCH-LOGICAL-c319t-f191815449101e40e8f22c16fd11a04198bc2e033d1a177816c959313f8eb6203</cites><orcidid>0000-0001-7917-7551</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zairi, Hadjer</creatorcontrib><creatorcontrib>Kedir Talha, Malika</creatorcontrib><creatorcontrib>Meddah, Karim</creatorcontrib><creatorcontrib>Ould Slimane, Saliha</creatorcontrib><title>FPGA-based system for artificial neural network arrhythmia classification</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>The automatic detection and cardiac classification are essential tasks for real-time cardiac diseases diagnosis. In this context, this paper describes a field programmable gates array (FPGA) implementation of arrhythmia recognition system, based on artificial neural network. Firstly, we have developed an optimized software-based medical diagnostic approach, capable of defining the best electrocardiogram (ECG) signal classes. The main advantage of this approach is the significant features minimization, compared to the existing researches, which leads to minimize the FPGA prototype size and saving energy consumption. Secondly, to provide a continuous and mobile arrhythmia monitoring system for patients, we have performed a hardware implementation. The FPGA has been referred due to their easy testing and quick implementation. The optimized approach implementation has been designed on the Nexys4 Artix7 evaluation kit using the Xilinx System Generator for DSP. In order to evaluate the performance of our proposal system, the classification performances of proposed FPGA fixed point have been compared to those obtained from the MATLAB floating point. The proposed architecture is validated on FPGA to be a customized mobile ECG classifier for long-term real-time monitoring of patients.</description><subject>Arrhythmia</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Cardiac arrhythmia</subject><subject>Classification</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Diagnostic software</subject><subject>Diagnostic systems</subject><subject>Electrocardiography</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Field programmable gate arrays</subject><subject>Floating point arithmetic</subject><subject>Image Processing and Computer Vision</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Performance evaluation</subject><subject>Probability and Statistics in Computer Science</subject><subject>Real time</subject><subject>Telemedicine</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKt_wNWA6-h7SSaTLEuxH1DQha5DmiZ2ajtTkynSf2_aEdy5eot77n1wCLlHeESA6ikBlAwpoKYgQCEVF2SAgnPKoVSXZABa5FgKfk1uUtoAgJCqHJD55HU6okub_KpIx9T5XRHaWNjY1aF2td0WjT_E8-m-2_iZk7g-dutdbQu3tSmdMNvVbXNLroLdJn_3e4fkffL8Np7Rxct0Ph4tqOOoOxpQo8JSCI2AXoBXgTGHMqwQLQjUaumYB85XaLGqFEqnS82RB-WXkgEfkod-dx_br4NPndm0h9jkl4ZxJWWlgctMsZ5ysU0p-mD2sd7ZeDQI5qTM9MpMVmbOyozIJd6XUoabDx__pv9p_QCacG0v</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Zairi, Hadjer</creator><creator>Kedir Talha, Malika</creator><creator>Meddah, Karim</creator><creator>Ould Slimane, Saliha</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-7917-7551</orcidid></search><sort><creationdate>20200401</creationdate><title>FPGA-based system for artificial neural network arrhythmia classification</title><author>Zairi, Hadjer ; Kedir Talha, Malika ; Meddah, Karim ; Ould Slimane, Saliha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f191815449101e40e8f22c16fd11a04198bc2e033d1a177816c959313f8eb6203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arrhythmia</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Cardiac arrhythmia</topic><topic>Classification</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Diagnostic software</topic><topic>Diagnostic systems</topic><topic>Electrocardiography</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Field programmable gate arrays</topic><topic>Floating point arithmetic</topic><topic>Image Processing and Computer Vision</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Performance evaluation</topic><topic>Probability and Statistics in Computer Science</topic><topic>Real time</topic><topic>Telemedicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zairi, Hadjer</creatorcontrib><creatorcontrib>Kedir Talha, Malika</creatorcontrib><creatorcontrib>Meddah, Karim</creatorcontrib><creatorcontrib>Ould Slimane, Saliha</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zairi, Hadjer</au><au>Kedir Talha, Malika</au><au>Meddah, Karim</au><au>Ould Slimane, Saliha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FPGA-based system for artificial neural network arrhythmia classification</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>32</volume><issue>8</issue><spage>4105</spage><epage>4120</epage><pages>4105-4120</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>The automatic detection and cardiac classification are essential tasks for real-time cardiac diseases diagnosis. In this context, this paper describes a field programmable gates array (FPGA) implementation of arrhythmia recognition system, based on artificial neural network. Firstly, we have developed an optimized software-based medical diagnostic approach, capable of defining the best electrocardiogram (ECG) signal classes. The main advantage of this approach is the significant features minimization, compared to the existing researches, which leads to minimize the FPGA prototype size and saving energy consumption. Secondly, to provide a continuous and mobile arrhythmia monitoring system for patients, we have performed a hardware implementation. The FPGA has been referred due to their easy testing and quick implementation. The optimized approach implementation has been designed on the Nexys4 Artix7 evaluation kit using the Xilinx System Generator for DSP. In order to evaluate the performance of our proposal system, the classification performances of proposed FPGA fixed point have been compared to those obtained from the MATLAB floating point. The proposed architecture is validated on FPGA to be a customized mobile ECG classifier for long-term real-time monitoring of patients.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-019-04081-4</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7917-7551</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2020-04, Vol.32 (8), p.4105-4120 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2386679036 |
source | Springer Nature |
subjects | Arrhythmia Artificial Intelligence Artificial neural networks Cardiac arrhythmia Classification Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Diagnostic software Diagnostic systems Electrocardiography Energy conservation Energy consumption Field programmable gate arrays Floating point arithmetic Image Processing and Computer Vision Monitoring Neural networks Original Article Performance evaluation Probability and Statistics in Computer Science Real time Telemedicine |
title | FPGA-based system for artificial neural network arrhythmia classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A34%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FPGA-based%20system%20for%20artificial%20neural%20network%20arrhythmia%20classification&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Zairi,%20Hadjer&rft.date=2020-04-01&rft.volume=32&rft.issue=8&rft.spage=4105&rft.epage=4120&rft.pages=4105-4120&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-019-04081-4&rft_dat=%3Cproquest_cross%3E2386679036%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-f191815449101e40e8f22c16fd11a04198bc2e033d1a177816c959313f8eb6203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2386679036&rft_id=info:pmid/&rfr_iscdi=true |