Loading…

FPGA-based system for artificial neural network arrhythmia classification

The automatic detection and cardiac classification are essential tasks for real-time cardiac diseases diagnosis. In this context, this paper describes a field programmable gates array (FPGA) implementation of arrhythmia recognition system, based on artificial neural network. Firstly, we have develop...

Full description

Saved in:
Bibliographic Details
Published in:Neural computing & applications 2020-04, Vol.32 (8), p.4105-4120
Main Authors: Zairi, Hadjer, Kedir Talha, Malika, Meddah, Karim, Ould Slimane, Saliha
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c319t-f191815449101e40e8f22c16fd11a04198bc2e033d1a177816c959313f8eb6203
cites cdi_FETCH-LOGICAL-c319t-f191815449101e40e8f22c16fd11a04198bc2e033d1a177816c959313f8eb6203
container_end_page 4120
container_issue 8
container_start_page 4105
container_title Neural computing & applications
container_volume 32
creator Zairi, Hadjer
Kedir Talha, Malika
Meddah, Karim
Ould Slimane, Saliha
description The automatic detection and cardiac classification are essential tasks for real-time cardiac diseases diagnosis. In this context, this paper describes a field programmable gates array (FPGA) implementation of arrhythmia recognition system, based on artificial neural network. Firstly, we have developed an optimized software-based medical diagnostic approach, capable of defining the best electrocardiogram (ECG) signal classes. The main advantage of this approach is the significant features minimization, compared to the existing researches, which leads to minimize the FPGA prototype size and saving energy consumption. Secondly, to provide a continuous and mobile arrhythmia monitoring system for patients, we have performed a hardware implementation. The FPGA has been referred due to their easy testing and quick implementation. The optimized approach implementation has been designed on the Nexys4 Artix7 evaluation kit using the Xilinx System Generator for DSP. In order to evaluate the performance of our proposal system, the classification performances of proposed FPGA fixed point have been compared to those obtained from the MATLAB floating point. The proposed architecture is validated on FPGA to be a customized mobile ECG classifier for long-term real-time monitoring of patients.
doi_str_mv 10.1007/s00521-019-04081-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2386679036</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2386679036</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-f191815449101e40e8f22c16fd11a04198bc2e033d1a177816c959313f8eb6203</originalsourceid><addsrcrecordid>eNp9kE1LAzEURYMoWKt_wNWA6-h7SSaTLEuxH1DQha5DmiZ2ajtTkynSf2_aEdy5eot77n1wCLlHeESA6ikBlAwpoKYgQCEVF2SAgnPKoVSXZABa5FgKfk1uUtoAgJCqHJD55HU6okub_KpIx9T5XRHaWNjY1aF2td0WjT_E8-m-2_iZk7g-dutdbQu3tSmdMNvVbXNLroLdJn_3e4fkffL8Np7Rxct0Ph4tqOOoOxpQo8JSCI2AXoBXgTGHMqwQLQjUaumYB85XaLGqFEqnS82RB-WXkgEfkod-dx_br4NPndm0h9jkl4ZxJWWlgctMsZ5ysU0p-mD2sd7ZeDQI5qTM9MpMVmbOyozIJd6XUoabDx__pv9p_QCacG0v</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386679036</pqid></control><display><type>article</type><title>FPGA-based system for artificial neural network arrhythmia classification</title><source>Springer Nature</source><creator>Zairi, Hadjer ; Kedir Talha, Malika ; Meddah, Karim ; Ould Slimane, Saliha</creator><creatorcontrib>Zairi, Hadjer ; Kedir Talha, Malika ; Meddah, Karim ; Ould Slimane, Saliha</creatorcontrib><description>The automatic detection and cardiac classification are essential tasks for real-time cardiac diseases diagnosis. In this context, this paper describes a field programmable gates array (FPGA) implementation of arrhythmia recognition system, based on artificial neural network. Firstly, we have developed an optimized software-based medical diagnostic approach, capable of defining the best electrocardiogram (ECG) signal classes. The main advantage of this approach is the significant features minimization, compared to the existing researches, which leads to minimize the FPGA prototype size and saving energy consumption. Secondly, to provide a continuous and mobile arrhythmia monitoring system for patients, we have performed a hardware implementation. The FPGA has been referred due to their easy testing and quick implementation. The optimized approach implementation has been designed on the Nexys4 Artix7 evaluation kit using the Xilinx System Generator for DSP. In order to evaluate the performance of our proposal system, the classification performances of proposed FPGA fixed point have been compared to those obtained from the MATLAB floating point. The proposed architecture is validated on FPGA to be a customized mobile ECG classifier for long-term real-time monitoring of patients.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-019-04081-4</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Arrhythmia ; Artificial Intelligence ; Artificial neural networks ; Cardiac arrhythmia ; Classification ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Diagnostic software ; Diagnostic systems ; Electrocardiography ; Energy conservation ; Energy consumption ; Field programmable gate arrays ; Floating point arithmetic ; Image Processing and Computer Vision ; Monitoring ; Neural networks ; Original Article ; Performance evaluation ; Probability and Statistics in Computer Science ; Real time ; Telemedicine</subject><ispartof>Neural computing &amp; applications, 2020-04, Vol.32 (8), p.4105-4120</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-f191815449101e40e8f22c16fd11a04198bc2e033d1a177816c959313f8eb6203</citedby><cites>FETCH-LOGICAL-c319t-f191815449101e40e8f22c16fd11a04198bc2e033d1a177816c959313f8eb6203</cites><orcidid>0000-0001-7917-7551</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zairi, Hadjer</creatorcontrib><creatorcontrib>Kedir Talha, Malika</creatorcontrib><creatorcontrib>Meddah, Karim</creatorcontrib><creatorcontrib>Ould Slimane, Saliha</creatorcontrib><title>FPGA-based system for artificial neural network arrhythmia classification</title><title>Neural computing &amp; applications</title><addtitle>Neural Comput &amp; Applic</addtitle><description>The automatic detection and cardiac classification are essential tasks for real-time cardiac diseases diagnosis. In this context, this paper describes a field programmable gates array (FPGA) implementation of arrhythmia recognition system, based on artificial neural network. Firstly, we have developed an optimized software-based medical diagnostic approach, capable of defining the best electrocardiogram (ECG) signal classes. The main advantage of this approach is the significant features minimization, compared to the existing researches, which leads to minimize the FPGA prototype size and saving energy consumption. Secondly, to provide a continuous and mobile arrhythmia monitoring system for patients, we have performed a hardware implementation. The FPGA has been referred due to their easy testing and quick implementation. The optimized approach implementation has been designed on the Nexys4 Artix7 evaluation kit using the Xilinx System Generator for DSP. In order to evaluate the performance of our proposal system, the classification performances of proposed FPGA fixed point have been compared to those obtained from the MATLAB floating point. The proposed architecture is validated on FPGA to be a customized mobile ECG classifier for long-term real-time monitoring of patients.</description><subject>Arrhythmia</subject><subject>Artificial Intelligence</subject><subject>Artificial neural networks</subject><subject>Cardiac arrhythmia</subject><subject>Classification</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Diagnostic software</subject><subject>Diagnostic systems</subject><subject>Electrocardiography</subject><subject>Energy conservation</subject><subject>Energy consumption</subject><subject>Field programmable gate arrays</subject><subject>Floating point arithmetic</subject><subject>Image Processing and Computer Vision</subject><subject>Monitoring</subject><subject>Neural networks</subject><subject>Original Article</subject><subject>Performance evaluation</subject><subject>Probability and Statistics in Computer Science</subject><subject>Real time</subject><subject>Telemedicine</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LAzEURYMoWKt_wNWA6-h7SSaTLEuxH1DQha5DmiZ2ajtTkynSf2_aEdy5eot77n1wCLlHeESA6ikBlAwpoKYgQCEVF2SAgnPKoVSXZABa5FgKfk1uUtoAgJCqHJD55HU6okub_KpIx9T5XRHaWNjY1aF2td0WjT_E8-m-2_iZk7g-dutdbQu3tSmdMNvVbXNLroLdJn_3e4fkffL8Np7Rxct0Ph4tqOOoOxpQo8JSCI2AXoBXgTGHMqwQLQjUaumYB85XaLGqFEqnS82RB-WXkgEfkod-dx_br4NPndm0h9jkl4ZxJWWlgctMsZ5ysU0p-mD2sd7ZeDQI5qTM9MpMVmbOyozIJd6XUoabDx__pv9p_QCacG0v</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Zairi, Hadjer</creator><creator>Kedir Talha, Malika</creator><creator>Meddah, Karim</creator><creator>Ould Slimane, Saliha</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-7917-7551</orcidid></search><sort><creationdate>20200401</creationdate><title>FPGA-based system for artificial neural network arrhythmia classification</title><author>Zairi, Hadjer ; Kedir Talha, Malika ; Meddah, Karim ; Ould Slimane, Saliha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-f191815449101e40e8f22c16fd11a04198bc2e033d1a177816c959313f8eb6203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Arrhythmia</topic><topic>Artificial Intelligence</topic><topic>Artificial neural networks</topic><topic>Cardiac arrhythmia</topic><topic>Classification</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Diagnostic software</topic><topic>Diagnostic systems</topic><topic>Electrocardiography</topic><topic>Energy conservation</topic><topic>Energy consumption</topic><topic>Field programmable gate arrays</topic><topic>Floating point arithmetic</topic><topic>Image Processing and Computer Vision</topic><topic>Monitoring</topic><topic>Neural networks</topic><topic>Original Article</topic><topic>Performance evaluation</topic><topic>Probability and Statistics in Computer Science</topic><topic>Real time</topic><topic>Telemedicine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zairi, Hadjer</creatorcontrib><creatorcontrib>Kedir Talha, Malika</creatorcontrib><creatorcontrib>Meddah, Karim</creatorcontrib><creatorcontrib>Ould Slimane, Saliha</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing &amp; applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zairi, Hadjer</au><au>Kedir Talha, Malika</au><au>Meddah, Karim</au><au>Ould Slimane, Saliha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FPGA-based system for artificial neural network arrhythmia classification</atitle><jtitle>Neural computing &amp; applications</jtitle><stitle>Neural Comput &amp; Applic</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>32</volume><issue>8</issue><spage>4105</spage><epage>4120</epage><pages>4105-4120</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>The automatic detection and cardiac classification are essential tasks for real-time cardiac diseases diagnosis. In this context, this paper describes a field programmable gates array (FPGA) implementation of arrhythmia recognition system, based on artificial neural network. Firstly, we have developed an optimized software-based medical diagnostic approach, capable of defining the best electrocardiogram (ECG) signal classes. The main advantage of this approach is the significant features minimization, compared to the existing researches, which leads to minimize the FPGA prototype size and saving energy consumption. Secondly, to provide a continuous and mobile arrhythmia monitoring system for patients, we have performed a hardware implementation. The FPGA has been referred due to their easy testing and quick implementation. The optimized approach implementation has been designed on the Nexys4 Artix7 evaluation kit using the Xilinx System Generator for DSP. In order to evaluate the performance of our proposal system, the classification performances of proposed FPGA fixed point have been compared to those obtained from the MATLAB floating point. The proposed architecture is validated on FPGA to be a customized mobile ECG classifier for long-term real-time monitoring of patients.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-019-04081-4</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-7917-7551</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0941-0643
ispartof Neural computing & applications, 2020-04, Vol.32 (8), p.4105-4120
issn 0941-0643
1433-3058
language eng
recordid cdi_proquest_journals_2386679036
source Springer Nature
subjects Arrhythmia
Artificial Intelligence
Artificial neural networks
Cardiac arrhythmia
Classification
Computational Biology/Bioinformatics
Computational Science and Engineering
Computer Science
Data Mining and Knowledge Discovery
Diagnostic software
Diagnostic systems
Electrocardiography
Energy conservation
Energy consumption
Field programmable gate arrays
Floating point arithmetic
Image Processing and Computer Vision
Monitoring
Neural networks
Original Article
Performance evaluation
Probability and Statistics in Computer Science
Real time
Telemedicine
title FPGA-based system for artificial neural network arrhythmia classification
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T19%3A34%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FPGA-based%20system%20for%20artificial%20neural%20network%20arrhythmia%20classification&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Zairi,%20Hadjer&rft.date=2020-04-01&rft.volume=32&rft.issue=8&rft.spage=4105&rft.epage=4120&rft.pages=4105-4120&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-019-04081-4&rft_dat=%3Cproquest_cross%3E2386679036%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-f191815449101e40e8f22c16fd11a04198bc2e033d1a177816c959313f8eb6203%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2386679036&rft_id=info:pmid/&rfr_iscdi=true