Loading…
Multi‐level feature optimization and multimodal contextual fusion for sentiment analysis and emotion classification
The availability of the humongous amount of multimodal content on the internet, the multimodal sentiment classification, and emotion detection has become the most researched topic. The feature selection, context extraction, and multi‐modal fusion are the most important challenges in multimodal senti...
Saved in:
Published in: | Computational intelligence 2020-05, Vol.36 (2), p.861-881 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3014-33a8020ecef9317fa25271a22f77f6014930a94058528751f39ed2fef052d1c33 |
---|---|
cites | cdi_FETCH-LOGICAL-c3014-33a8020ecef9317fa25271a22f77f6014930a94058528751f39ed2fef052d1c33 |
container_end_page | 881 |
container_issue | 2 |
container_start_page | 861 |
container_title | Computational intelligence |
container_volume | 36 |
creator | Huddar, Mahesh G. Sannakki, Sanjeev S. Rajpurohit, Vijay S. |
description | The availability of the humongous amount of multimodal content on the internet, the multimodal sentiment classification, and emotion detection has become the most researched topic. The feature selection, context extraction, and multi‐modal fusion are the most important challenges in multimodal sentiment classification and affective computing. To address these challenges this paper presents multilevel feature optimization and multimodal contextual fusion technique. The evolutionary computing based feature selection models extract a subset of features from multiple modalities. The contextual information between the neighboring utterances is extracted using bidirectional long‐short‐term‐memory at multiple levels. Initially, bimodal fusion is performed by fusing a combination of two unimodal modalities at a time and finally, trimodal fusion is performed by fusing all three modalities. The result of the proposed method is demonstrated using two publically available datasets such as CMU‐MOSI for sentiment classification and IEMOCAP for affective computing. Incorporating a subset of features and contextual information, the proposed model obtains better classification accuracy than the two standard baselines by over 3% and 6% in sentiment and emotion classification, respectively. |
doi_str_mv | 10.1111/coin.12274 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2386936857</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2386936857</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3014-33a8020ecef9317fa25271a22f77f6014930a94058528751f39ed2fef052d1c33</originalsourceid><addsrcrecordid>eNp90LtOwzAUBmALgUQpLDxBJDakgC9J7Iyo4lKp0AVmy3KOJVdOXOwEKBOPwDPyJLgJMx5sD9_5dfQjdE7wFUnnWnvbXRFKeXGAZqSoeC6qAh-iGRa0yHnNymN0EuMGY0xYIWZoeBxcb3--vh28gcsMqH4IkPltb1v7qXrru0x1TdbuWesb5TLtux4--iF9zRD3wPiQRegSSFfiyu2ijeMctH7M0E7FaI3VY-QpOjLKRTj7e-fo5e72efGQr9b3y8XNKtcMkyJnTAlMMWgwNSPcKFpSThSlhnNTJVEzrOoCl6KkgpfEsBoaasDgkjZEMzZHF1PuNvjXAWIvN34Iab8oKRNVzSpR8qQuJ6WDjzGAkdtgWxV2kmC5r1Xua5VjrQmTCb9bB7t_pFysl0_TzC_bN316</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386936857</pqid></control><display><type>article</type><title>Multi‐level feature optimization and multimodal contextual fusion for sentiment analysis and emotion classification</title><source>Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list)</source><source>Business Source Ultimate</source><creator>Huddar, Mahesh G. ; Sannakki, Sanjeev S. ; Rajpurohit, Vijay S.</creator><creatorcontrib>Huddar, Mahesh G. ; Sannakki, Sanjeev S. ; Rajpurohit, Vijay S.</creatorcontrib><description>The availability of the humongous amount of multimodal content on the internet, the multimodal sentiment classification, and emotion detection has become the most researched topic. The feature selection, context extraction, and multi‐modal fusion are the most important challenges in multimodal sentiment classification and affective computing. To address these challenges this paper presents multilevel feature optimization and multimodal contextual fusion technique. The evolutionary computing based feature selection models extract a subset of features from multiple modalities. The contextual information between the neighboring utterances is extracted using bidirectional long‐short‐term‐memory at multiple levels. Initially, bimodal fusion is performed by fusing a combination of two unimodal modalities at a time and finally, trimodal fusion is performed by fusing all three modalities. The result of the proposed method is demonstrated using two publically available datasets such as CMU‐MOSI for sentiment classification and IEMOCAP for affective computing. Incorporating a subset of features and contextual information, the proposed model obtains better classification accuracy than the two standard baselines by over 3% and 6% in sentiment and emotion classification, respectively.</description><identifier>ISSN: 0824-7935</identifier><identifier>EISSN: 1467-8640</identifier><identifier>DOI: 10.1111/coin.12274</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>Affective computing ; bidirectional LSTM ; Classification ; contextual information ; Data mining ; Emotions ; Evolutionary algorithms ; evolutionary computing ; Feature extraction ; Feature selection ; Model accuracy ; multimodal fusion ; Optimization ; Sentiment analysis</subject><ispartof>Computational intelligence, 2020-05, Vol.36 (2), p.861-881</ispartof><rights>2020 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3014-33a8020ecef9317fa25271a22f77f6014930a94058528751f39ed2fef052d1c33</citedby><cites>FETCH-LOGICAL-c3014-33a8020ecef9317fa25271a22f77f6014930a94058528751f39ed2fef052d1c33</cites><orcidid>0000-0002-4344-6024 ; 0000-0003-0659-296X ; 0000-0002-7084-2196</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Huddar, Mahesh G.</creatorcontrib><creatorcontrib>Sannakki, Sanjeev S.</creatorcontrib><creatorcontrib>Rajpurohit, Vijay S.</creatorcontrib><title>Multi‐level feature optimization and multimodal contextual fusion for sentiment analysis and emotion classification</title><title>Computational intelligence</title><description>The availability of the humongous amount of multimodal content on the internet, the multimodal sentiment classification, and emotion detection has become the most researched topic. The feature selection, context extraction, and multi‐modal fusion are the most important challenges in multimodal sentiment classification and affective computing. To address these challenges this paper presents multilevel feature optimization and multimodal contextual fusion technique. The evolutionary computing based feature selection models extract a subset of features from multiple modalities. The contextual information between the neighboring utterances is extracted using bidirectional long‐short‐term‐memory at multiple levels. Initially, bimodal fusion is performed by fusing a combination of two unimodal modalities at a time and finally, trimodal fusion is performed by fusing all three modalities. The result of the proposed method is demonstrated using two publically available datasets such as CMU‐MOSI for sentiment classification and IEMOCAP for affective computing. Incorporating a subset of features and contextual information, the proposed model obtains better classification accuracy than the two standard baselines by over 3% and 6% in sentiment and emotion classification, respectively.</description><subject>Affective computing</subject><subject>bidirectional LSTM</subject><subject>Classification</subject><subject>contextual information</subject><subject>Data mining</subject><subject>Emotions</subject><subject>Evolutionary algorithms</subject><subject>evolutionary computing</subject><subject>Feature extraction</subject><subject>Feature selection</subject><subject>Model accuracy</subject><subject>multimodal fusion</subject><subject>Optimization</subject><subject>Sentiment analysis</subject><issn>0824-7935</issn><issn>1467-8640</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp90LtOwzAUBmALgUQpLDxBJDakgC9J7Iyo4lKp0AVmy3KOJVdOXOwEKBOPwDPyJLgJMx5sD9_5dfQjdE7wFUnnWnvbXRFKeXGAZqSoeC6qAh-iGRa0yHnNymN0EuMGY0xYIWZoeBxcb3--vh28gcsMqH4IkPltb1v7qXrru0x1TdbuWesb5TLtux4--iF9zRD3wPiQRegSSFfiyu2ijeMctH7M0E7FaI3VY-QpOjLKRTj7e-fo5e72efGQr9b3y8XNKtcMkyJnTAlMMWgwNSPcKFpSThSlhnNTJVEzrOoCl6KkgpfEsBoaasDgkjZEMzZHF1PuNvjXAWIvN34Iab8oKRNVzSpR8qQuJ6WDjzGAkdtgWxV2kmC5r1Xua5VjrQmTCb9bB7t_pFysl0_TzC_bN316</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Huddar, Mahesh G.</creator><creator>Sannakki, Sanjeev S.</creator><creator>Rajpurohit, Vijay S.</creator><general>John Wiley & Sons, Inc</general><general>Blackwell Publishing Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4344-6024</orcidid><orcidid>https://orcid.org/0000-0003-0659-296X</orcidid><orcidid>https://orcid.org/0000-0002-7084-2196</orcidid></search><sort><creationdate>202005</creationdate><title>Multi‐level feature optimization and multimodal contextual fusion for sentiment analysis and emotion classification</title><author>Huddar, Mahesh G. ; Sannakki, Sanjeev S. ; Rajpurohit, Vijay S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3014-33a8020ecef9317fa25271a22f77f6014930a94058528751f39ed2fef052d1c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Affective computing</topic><topic>bidirectional LSTM</topic><topic>Classification</topic><topic>contextual information</topic><topic>Data mining</topic><topic>Emotions</topic><topic>Evolutionary algorithms</topic><topic>evolutionary computing</topic><topic>Feature extraction</topic><topic>Feature selection</topic><topic>Model accuracy</topic><topic>multimodal fusion</topic><topic>Optimization</topic><topic>Sentiment analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huddar, Mahesh G.</creatorcontrib><creatorcontrib>Sannakki, Sanjeev S.</creatorcontrib><creatorcontrib>Rajpurohit, Vijay S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computational intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huddar, Mahesh G.</au><au>Sannakki, Sanjeev S.</au><au>Rajpurohit, Vijay S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi‐level feature optimization and multimodal contextual fusion for sentiment analysis and emotion classification</atitle><jtitle>Computational intelligence</jtitle><date>2020-05</date><risdate>2020</risdate><volume>36</volume><issue>2</issue><spage>861</spage><epage>881</epage><pages>861-881</pages><issn>0824-7935</issn><eissn>1467-8640</eissn><abstract>The availability of the humongous amount of multimodal content on the internet, the multimodal sentiment classification, and emotion detection has become the most researched topic. The feature selection, context extraction, and multi‐modal fusion are the most important challenges in multimodal sentiment classification and affective computing. To address these challenges this paper presents multilevel feature optimization and multimodal contextual fusion technique. The evolutionary computing based feature selection models extract a subset of features from multiple modalities. The contextual information between the neighboring utterances is extracted using bidirectional long‐short‐term‐memory at multiple levels. Initially, bimodal fusion is performed by fusing a combination of two unimodal modalities at a time and finally, trimodal fusion is performed by fusing all three modalities. The result of the proposed method is demonstrated using two publically available datasets such as CMU‐MOSI for sentiment classification and IEMOCAP for affective computing. Incorporating a subset of features and contextual information, the proposed model obtains better classification accuracy than the two standard baselines by over 3% and 6% in sentiment and emotion classification, respectively.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1111/coin.12274</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0002-4344-6024</orcidid><orcidid>https://orcid.org/0000-0003-0659-296X</orcidid><orcidid>https://orcid.org/0000-0002-7084-2196</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0824-7935 |
ispartof | Computational intelligence, 2020-05, Vol.36 (2), p.861-881 |
issn | 0824-7935 1467-8640 |
language | eng |
recordid | cdi_proquest_journals_2386936857 |
source | Wiley:Jisc Collections:Wiley Read and Publish Open Access 2024-2025 (reading list); Business Source Ultimate |
subjects | Affective computing bidirectional LSTM Classification contextual information Data mining Emotions Evolutionary algorithms evolutionary computing Feature extraction Feature selection Model accuracy multimodal fusion Optimization Sentiment analysis |
title | Multi‐level feature optimization and multimodal contextual fusion for sentiment analysis and emotion classification |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T12%3A32%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi%E2%80%90level%20feature%20optimization%20and%20multimodal%20contextual%20fusion%20for%20sentiment%20analysis%20and%20emotion%20classification&rft.jtitle=Computational%20intelligence&rft.au=Huddar,%20Mahesh%20G.&rft.date=2020-05&rft.volume=36&rft.issue=2&rft.spage=861&rft.epage=881&rft.pages=861-881&rft.issn=0824-7935&rft.eissn=1467-8640&rft_id=info:doi/10.1111/coin.12274&rft_dat=%3Cproquest_cross%3E2386936857%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3014-33a8020ecef9317fa25271a22f77f6014930a94058528751f39ed2fef052d1c33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2386936857&rft_id=info:pmid/&rfr_iscdi=true |