Loading…
Experimental investigation and optimization of pool boiling heat transfer enhancement over graphene-coated copper surface
The current study presents an artificial neural network model used to predict the boiling heat transfer coefficient of different coating thicknesses of a graphene-coated copper surface in the pool boiling experimental setup for deionized water. The surface characterization has been carried out to st...
Saved in:
Published in: | Journal of thermal analysis and calorimetry 2020-05, Vol.140 (3), p.1393-1411 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c429t-2318c364a991bab336ecc43718c27e62cacf887166f656baf61158fa67e919c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c429t-2318c364a991bab336ecc43718c27e62cacf887166f656baf61158fa67e919c3 |
container_end_page | 1411 |
container_issue | 3 |
container_start_page | 1393 |
container_title | Journal of thermal analysis and calorimetry |
container_volume | 140 |
creator | Gajghate, Sameer S. Barathula, Sreeram Das, Sudev Saha, Bidyut B. Bhaumik, Swapan |
description | The current study presents an artificial neural network model used to predict the boiling heat transfer coefficient of different coating thicknesses of a graphene-coated copper surface in the pool boiling experimental setup for deionized water. The surface characterization has been carried out to study the structure, morphology and surface behavior. The investigations are carried out to evaluate the boiling heat transfer coefficient, heat flux and wall superheat for various thicknesses of nano-coated surfaces experimentally, and the obtained results are compared with those of the reported studies and existing empirical correlations. After that, these results are compared with the outputs such as current, heat flux, wall superheat and boiling heat transfer coefficient obtained using a MATLAB-based artificial neural network model with coating thickness, surface roughness and voltage as input variables. The admirable accuracies are obtained with the predicted optimal model outputs with experimental observation in each test case. |
doi_str_mv | 10.1007/s10973-019-08740-5 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2386946258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A619660266</galeid><sourcerecordid>A619660266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-2318c364a991bab336ecc43718c27e62cacf887166f656baf61158fa67e919c3</originalsourceid><addsrcrecordid>eNp9UU1r3TAQNKWFpGn_QE6Cnnpwog9bto4hpE0gUGhzF_v0Vn4KfpIr6YWkvz6buFBy6UnLMDO7o2maU8HPBOfDeRHcDKrlwrR8HDre9u-aY9GPYyuN1O9pVjRr0fOj5mMp95xzY7g4bp6uHhfMYY-xwsxCfMBSwwQ1pMggbllaatiHPyuQPFtSmtkmhTnEie0QKqsZYvGYGcYdRIcvViw9EDBlWHYYsXUJKm6ZSwvtYuWQPTj81HzwMBf8_Pc9ae6-Xd1dXre3P77fXF7ctq6TprZSidEp3YExYgMbpTQ616mBUDmglg6cH8dBaO11rzfgtaDcHvSARhinTpovq-2S0-8DpbP36ZAjbbRSjdp0WvYjsc5W1gQz2hB9olhkDVvcB5ci-kD4hRZGay61JsHXNwLiVHysExxKsTe_fr7lypXrciolo7cL_TjkJyu4fanPrvVZqs--1md7EqlVVIgcJ8z_7v6P6hmhmp7Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386946258</pqid></control><display><type>article</type><title>Experimental investigation and optimization of pool boiling heat transfer enhancement over graphene-coated copper surface</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Gajghate, Sameer S. ; Barathula, Sreeram ; Das, Sudev ; Saha, Bidyut B. ; Bhaumik, Swapan</creator><creatorcontrib>Gajghate, Sameer S. ; Barathula, Sreeram ; Das, Sudev ; Saha, Bidyut B. ; Bhaumik, Swapan</creatorcontrib><description>The current study presents an artificial neural network model used to predict the boiling heat transfer coefficient of different coating thicknesses of a graphene-coated copper surface in the pool boiling experimental setup for deionized water. The surface characterization has been carried out to study the structure, morphology and surface behavior. The investigations are carried out to evaluate the boiling heat transfer coefficient, heat flux and wall superheat for various thicknesses of nano-coated surfaces experimentally, and the obtained results are compared with those of the reported studies and existing empirical correlations. After that, these results are compared with the outputs such as current, heat flux, wall superheat and boiling heat transfer coefficient obtained using a MATLAB-based artificial neural network model with coating thickness, surface roughness and voltage as input variables. The admirable accuracies are obtained with the predicted optimal model outputs with experimental observation in each test case.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-019-08740-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analytical Chemistry ; Artificial neural networks ; Boiling ; Chemistry ; Chemistry and Materials Science ; Coating ; Coatings ; Copper ; Copper products ; Correlation analysis ; Deionization ; Graphene ; Graphite ; Heat flux ; Heat transfer ; Heat transfer coefficients ; Inorganic Chemistry ; Measurement Science and Instrumentation ; Morphology ; Neural networks ; Optimization ; Physical Chemistry ; Polymer Sciences ; Surface properties ; Surface roughness ; Temperature ; Thickness</subject><ispartof>Journal of thermal analysis and calorimetry, 2020-05, Vol.140 (3), p.1393-1411</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Akadémiai Kiadó, Budapest, Hungary 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-2318c364a991bab336ecc43718c27e62cacf887166f656baf61158fa67e919c3</citedby><cites>FETCH-LOGICAL-c429t-2318c364a991bab336ecc43718c27e62cacf887166f656baf61158fa67e919c3</cites><orcidid>0000-0002-8781-7122 ; 0000-0002-9902-2642 ; 0000-0002-5253-9302 ; 0000-0001-9774-4150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gajghate, Sameer S.</creatorcontrib><creatorcontrib>Barathula, Sreeram</creatorcontrib><creatorcontrib>Das, Sudev</creatorcontrib><creatorcontrib>Saha, Bidyut B.</creatorcontrib><creatorcontrib>Bhaumik, Swapan</creatorcontrib><title>Experimental investigation and optimization of pool boiling heat transfer enhancement over graphene-coated copper surface</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>The current study presents an artificial neural network model used to predict the boiling heat transfer coefficient of different coating thicknesses of a graphene-coated copper surface in the pool boiling experimental setup for deionized water. The surface characterization has been carried out to study the structure, morphology and surface behavior. The investigations are carried out to evaluate the boiling heat transfer coefficient, heat flux and wall superheat for various thicknesses of nano-coated surfaces experimentally, and the obtained results are compared with those of the reported studies and existing empirical correlations. After that, these results are compared with the outputs such as current, heat flux, wall superheat and boiling heat transfer coefficient obtained using a MATLAB-based artificial neural network model with coating thickness, surface roughness and voltage as input variables. The admirable accuracies are obtained with the predicted optimal model outputs with experimental observation in each test case.</description><subject>Analytical Chemistry</subject><subject>Artificial neural networks</subject><subject>Boiling</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coating</subject><subject>Coatings</subject><subject>Copper</subject><subject>Copper products</subject><subject>Correlation analysis</subject><subject>Deionization</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Inorganic Chemistry</subject><subject>Measurement Science and Instrumentation</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Surface properties</subject><subject>Surface roughness</subject><subject>Temperature</subject><subject>Thickness</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UU1r3TAQNKWFpGn_QE6Cnnpwog9bto4hpE0gUGhzF_v0Vn4KfpIr6YWkvz6buFBy6UnLMDO7o2maU8HPBOfDeRHcDKrlwrR8HDre9u-aY9GPYyuN1O9pVjRr0fOj5mMp95xzY7g4bp6uHhfMYY-xwsxCfMBSwwQ1pMggbllaatiHPyuQPFtSmtkmhTnEie0QKqsZYvGYGcYdRIcvViw9EDBlWHYYsXUJKm6ZSwvtYuWQPTj81HzwMBf8_Pc9ae6-Xd1dXre3P77fXF7ctq6TprZSidEp3YExYgMbpTQ616mBUDmglg6cH8dBaO11rzfgtaDcHvSARhinTpovq-2S0-8DpbP36ZAjbbRSjdp0WvYjsc5W1gQz2hB9olhkDVvcB5ci-kD4hRZGay61JsHXNwLiVHysExxKsTe_fr7lypXrciolo7cL_TjkJyu4fanPrvVZqs--1md7EqlVVIgcJ8z_7v6P6hmhmp7Y</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Gajghate, Sameer S.</creator><creator>Barathula, Sreeram</creator><creator>Das, Sudev</creator><creator>Saha, Bidyut B.</creator><creator>Bhaumik, Swapan</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0002-8781-7122</orcidid><orcidid>https://orcid.org/0000-0002-9902-2642</orcidid><orcidid>https://orcid.org/0000-0002-5253-9302</orcidid><orcidid>https://orcid.org/0000-0001-9774-4150</orcidid></search><sort><creationdate>20200501</creationdate><title>Experimental investigation and optimization of pool boiling heat transfer enhancement over graphene-coated copper surface</title><author>Gajghate, Sameer S. ; Barathula, Sreeram ; Das, Sudev ; Saha, Bidyut B. ; Bhaumik, Swapan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-2318c364a991bab336ecc43718c27e62cacf887166f656baf61158fa67e919c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical Chemistry</topic><topic>Artificial neural networks</topic><topic>Boiling</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coating</topic><topic>Coatings</topic><topic>Copper</topic><topic>Copper products</topic><topic>Correlation analysis</topic><topic>Deionization</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Inorganic Chemistry</topic><topic>Measurement Science and Instrumentation</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Surface properties</topic><topic>Surface roughness</topic><topic>Temperature</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gajghate, Sameer S.</creatorcontrib><creatorcontrib>Barathula, Sreeram</creatorcontrib><creatorcontrib>Das, Sudev</creatorcontrib><creatorcontrib>Saha, Bidyut B.</creatorcontrib><creatorcontrib>Bhaumik, Swapan</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gajghate, Sameer S.</au><au>Barathula, Sreeram</au><au>Das, Sudev</au><au>Saha, Bidyut B.</au><au>Bhaumik, Swapan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental investigation and optimization of pool boiling heat transfer enhancement over graphene-coated copper surface</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>140</volume><issue>3</issue><spage>1393</spage><epage>1411</epage><pages>1393-1411</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>The current study presents an artificial neural network model used to predict the boiling heat transfer coefficient of different coating thicknesses of a graphene-coated copper surface in the pool boiling experimental setup for deionized water. The surface characterization has been carried out to study the structure, morphology and surface behavior. The investigations are carried out to evaluate the boiling heat transfer coefficient, heat flux and wall superheat for various thicknesses of nano-coated surfaces experimentally, and the obtained results are compared with those of the reported studies and existing empirical correlations. After that, these results are compared with the outputs such as current, heat flux, wall superheat and boiling heat transfer coefficient obtained using a MATLAB-based artificial neural network model with coating thickness, surface roughness and voltage as input variables. The admirable accuracies are obtained with the predicted optimal model outputs with experimental observation in each test case.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-019-08740-5</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8781-7122</orcidid><orcidid>https://orcid.org/0000-0002-9902-2642</orcidid><orcidid>https://orcid.org/0000-0002-5253-9302</orcidid><orcidid>https://orcid.org/0000-0001-9774-4150</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1388-6150 |
ispartof | Journal of thermal analysis and calorimetry, 2020-05, Vol.140 (3), p.1393-1411 |
issn | 1388-6150 1588-2926 |
language | eng |
recordid | cdi_proquest_journals_2386946258 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Analytical Chemistry Artificial neural networks Boiling Chemistry Chemistry and Materials Science Coating Coatings Copper Copper products Correlation analysis Deionization Graphene Graphite Heat flux Heat transfer Heat transfer coefficients Inorganic Chemistry Measurement Science and Instrumentation Morphology Neural networks Optimization Physical Chemistry Polymer Sciences Surface properties Surface roughness Temperature Thickness |
title | Experimental investigation and optimization of pool boiling heat transfer enhancement over graphene-coated copper surface |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A14%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20investigation%20and%20optimization%20of%20pool%20boiling%20heat%20transfer%20enhancement%20over%20graphene-coated%20copper%20surface&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Gajghate,%20Sameer%20S.&rft.date=2020-05-01&rft.volume=140&rft.issue=3&rft.spage=1393&rft.epage=1411&rft.pages=1393-1411&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-019-08740-5&rft_dat=%3Cgale_proqu%3EA619660266%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-2318c364a991bab336ecc43718c27e62cacf887166f656baf61158fa67e919c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2386946258&rft_id=info:pmid/&rft_galeid=A619660266&rfr_iscdi=true |