Loading…

Experimental investigation and optimization of pool boiling heat transfer enhancement over graphene-coated copper surface

The current study presents an artificial neural network model used to predict the boiling heat transfer coefficient of different coating thicknesses of a graphene-coated copper surface in the pool boiling experimental setup for deionized water. The surface characterization has been carried out to st...

Full description

Saved in:
Bibliographic Details
Published in:Journal of thermal analysis and calorimetry 2020-05, Vol.140 (3), p.1393-1411
Main Authors: Gajghate, Sameer S., Barathula, Sreeram, Das, Sudev, Saha, Bidyut B., Bhaumik, Swapan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c429t-2318c364a991bab336ecc43718c27e62cacf887166f656baf61158fa67e919c3
cites cdi_FETCH-LOGICAL-c429t-2318c364a991bab336ecc43718c27e62cacf887166f656baf61158fa67e919c3
container_end_page 1411
container_issue 3
container_start_page 1393
container_title Journal of thermal analysis and calorimetry
container_volume 140
creator Gajghate, Sameer S.
Barathula, Sreeram
Das, Sudev
Saha, Bidyut B.
Bhaumik, Swapan
description The current study presents an artificial neural network model used to predict the boiling heat transfer coefficient of different coating thicknesses of a graphene-coated copper surface in the pool boiling experimental setup for deionized water. The surface characterization has been carried out to study the structure, morphology and surface behavior. The investigations are carried out to evaluate the boiling heat transfer coefficient, heat flux and wall superheat for various thicknesses of nano-coated surfaces experimentally, and the obtained results are compared with those of the reported studies and existing empirical correlations. After that, these results are compared with the outputs such as current, heat flux, wall superheat and boiling heat transfer coefficient obtained using a MATLAB-based artificial neural network model with coating thickness, surface roughness and voltage as input variables. The admirable accuracies are obtained with the predicted optimal model outputs with experimental observation in each test case.
doi_str_mv 10.1007/s10973-019-08740-5
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2386946258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A619660266</galeid><sourcerecordid>A619660266</sourcerecordid><originalsourceid>FETCH-LOGICAL-c429t-2318c364a991bab336ecc43718c27e62cacf887166f656baf61158fa67e919c3</originalsourceid><addsrcrecordid>eNp9UU1r3TAQNKWFpGn_QE6Cnnpwog9bto4hpE0gUGhzF_v0Vn4KfpIr6YWkvz6buFBy6UnLMDO7o2maU8HPBOfDeRHcDKrlwrR8HDre9u-aY9GPYyuN1O9pVjRr0fOj5mMp95xzY7g4bp6uHhfMYY-xwsxCfMBSwwQ1pMggbllaatiHPyuQPFtSmtkmhTnEie0QKqsZYvGYGcYdRIcvViw9EDBlWHYYsXUJKm6ZSwvtYuWQPTj81HzwMBf8_Pc9ae6-Xd1dXre3P77fXF7ctq6TprZSidEp3YExYgMbpTQ616mBUDmglg6cH8dBaO11rzfgtaDcHvSARhinTpovq-2S0-8DpbP36ZAjbbRSjdp0WvYjsc5W1gQz2hB9olhkDVvcB5ci-kD4hRZGay61JsHXNwLiVHysExxKsTe_fr7lypXrciolo7cL_TjkJyu4fanPrvVZqs--1md7EqlVVIgcJ8z_7v6P6hmhmp7Y</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2386946258</pqid></control><display><type>article</type><title>Experimental investigation and optimization of pool boiling heat transfer enhancement over graphene-coated copper surface</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Gajghate, Sameer S. ; Barathula, Sreeram ; Das, Sudev ; Saha, Bidyut B. ; Bhaumik, Swapan</creator><creatorcontrib>Gajghate, Sameer S. ; Barathula, Sreeram ; Das, Sudev ; Saha, Bidyut B. ; Bhaumik, Swapan</creatorcontrib><description>The current study presents an artificial neural network model used to predict the boiling heat transfer coefficient of different coating thicknesses of a graphene-coated copper surface in the pool boiling experimental setup for deionized water. The surface characterization has been carried out to study the structure, morphology and surface behavior. The investigations are carried out to evaluate the boiling heat transfer coefficient, heat flux and wall superheat for various thicknesses of nano-coated surfaces experimentally, and the obtained results are compared with those of the reported studies and existing empirical correlations. After that, these results are compared with the outputs such as current, heat flux, wall superheat and boiling heat transfer coefficient obtained using a MATLAB-based artificial neural network model with coating thickness, surface roughness and voltage as input variables. The admirable accuracies are obtained with the predicted optimal model outputs with experimental observation in each test case.</description><identifier>ISSN: 1388-6150</identifier><identifier>EISSN: 1588-2926</identifier><identifier>DOI: 10.1007/s10973-019-08740-5</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analytical Chemistry ; Artificial neural networks ; Boiling ; Chemistry ; Chemistry and Materials Science ; Coating ; Coatings ; Copper ; Copper products ; Correlation analysis ; Deionization ; Graphene ; Graphite ; Heat flux ; Heat transfer ; Heat transfer coefficients ; Inorganic Chemistry ; Measurement Science and Instrumentation ; Morphology ; Neural networks ; Optimization ; Physical Chemistry ; Polymer Sciences ; Surface properties ; Surface roughness ; Temperature ; Thickness</subject><ispartof>Journal of thermal analysis and calorimetry, 2020-05, Vol.140 (3), p.1393-1411</ispartof><rights>Akadémiai Kiadó, Budapest, Hungary 2019</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Akadémiai Kiadó, Budapest, Hungary 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c429t-2318c364a991bab336ecc43718c27e62cacf887166f656baf61158fa67e919c3</citedby><cites>FETCH-LOGICAL-c429t-2318c364a991bab336ecc43718c27e62cacf887166f656baf61158fa67e919c3</cites><orcidid>0000-0002-8781-7122 ; 0000-0002-9902-2642 ; 0000-0002-5253-9302 ; 0000-0001-9774-4150</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Gajghate, Sameer S.</creatorcontrib><creatorcontrib>Barathula, Sreeram</creatorcontrib><creatorcontrib>Das, Sudev</creatorcontrib><creatorcontrib>Saha, Bidyut B.</creatorcontrib><creatorcontrib>Bhaumik, Swapan</creatorcontrib><title>Experimental investigation and optimization of pool boiling heat transfer enhancement over graphene-coated copper surface</title><title>Journal of thermal analysis and calorimetry</title><addtitle>J Therm Anal Calorim</addtitle><description>The current study presents an artificial neural network model used to predict the boiling heat transfer coefficient of different coating thicknesses of a graphene-coated copper surface in the pool boiling experimental setup for deionized water. The surface characterization has been carried out to study the structure, morphology and surface behavior. The investigations are carried out to evaluate the boiling heat transfer coefficient, heat flux and wall superheat for various thicknesses of nano-coated surfaces experimentally, and the obtained results are compared with those of the reported studies and existing empirical correlations. After that, these results are compared with the outputs such as current, heat flux, wall superheat and boiling heat transfer coefficient obtained using a MATLAB-based artificial neural network model with coating thickness, surface roughness and voltage as input variables. The admirable accuracies are obtained with the predicted optimal model outputs with experimental observation in each test case.</description><subject>Analytical Chemistry</subject><subject>Artificial neural networks</subject><subject>Boiling</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Coating</subject><subject>Coatings</subject><subject>Copper</subject><subject>Copper products</subject><subject>Correlation analysis</subject><subject>Deionization</subject><subject>Graphene</subject><subject>Graphite</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Heat transfer coefficients</subject><subject>Inorganic Chemistry</subject><subject>Measurement Science and Instrumentation</subject><subject>Morphology</subject><subject>Neural networks</subject><subject>Optimization</subject><subject>Physical Chemistry</subject><subject>Polymer Sciences</subject><subject>Surface properties</subject><subject>Surface roughness</subject><subject>Temperature</subject><subject>Thickness</subject><issn>1388-6150</issn><issn>1588-2926</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9UU1r3TAQNKWFpGn_QE6Cnnpwog9bto4hpE0gUGhzF_v0Vn4KfpIr6YWkvz6buFBy6UnLMDO7o2maU8HPBOfDeRHcDKrlwrR8HDre9u-aY9GPYyuN1O9pVjRr0fOj5mMp95xzY7g4bp6uHhfMYY-xwsxCfMBSwwQ1pMggbllaatiHPyuQPFtSmtkmhTnEie0QKqsZYvGYGcYdRIcvViw9EDBlWHYYsXUJKm6ZSwvtYuWQPTj81HzwMBf8_Pc9ae6-Xd1dXre3P77fXF7ctq6TprZSidEp3YExYgMbpTQ616mBUDmglg6cH8dBaO11rzfgtaDcHvSARhinTpovq-2S0-8DpbP36ZAjbbRSjdp0WvYjsc5W1gQz2hB9olhkDVvcB5ci-kD4hRZGay61JsHXNwLiVHysExxKsTe_fr7lypXrciolo7cL_TjkJyu4fanPrvVZqs--1md7EqlVVIgcJ8z_7v6P6hmhmp7Y</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Gajghate, Sameer S.</creator><creator>Barathula, Sreeram</creator><creator>Das, Sudev</creator><creator>Saha, Bidyut B.</creator><creator>Bhaumik, Swapan</creator><general>Springer International Publishing</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><orcidid>https://orcid.org/0000-0002-8781-7122</orcidid><orcidid>https://orcid.org/0000-0002-9902-2642</orcidid><orcidid>https://orcid.org/0000-0002-5253-9302</orcidid><orcidid>https://orcid.org/0000-0001-9774-4150</orcidid></search><sort><creationdate>20200501</creationdate><title>Experimental investigation and optimization of pool boiling heat transfer enhancement over graphene-coated copper surface</title><author>Gajghate, Sameer S. ; Barathula, Sreeram ; Das, Sudev ; Saha, Bidyut B. ; Bhaumik, Swapan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c429t-2318c364a991bab336ecc43718c27e62cacf887166f656baf61158fa67e919c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical Chemistry</topic><topic>Artificial neural networks</topic><topic>Boiling</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Coating</topic><topic>Coatings</topic><topic>Copper</topic><topic>Copper products</topic><topic>Correlation analysis</topic><topic>Deionization</topic><topic>Graphene</topic><topic>Graphite</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Heat transfer coefficients</topic><topic>Inorganic Chemistry</topic><topic>Measurement Science and Instrumentation</topic><topic>Morphology</topic><topic>Neural networks</topic><topic>Optimization</topic><topic>Physical Chemistry</topic><topic>Polymer Sciences</topic><topic>Surface properties</topic><topic>Surface roughness</topic><topic>Temperature</topic><topic>Thickness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gajghate, Sameer S.</creatorcontrib><creatorcontrib>Barathula, Sreeram</creatorcontrib><creatorcontrib>Das, Sudev</creatorcontrib><creatorcontrib>Saha, Bidyut B.</creatorcontrib><creatorcontrib>Bhaumik, Swapan</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Journal of thermal analysis and calorimetry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gajghate, Sameer S.</au><au>Barathula, Sreeram</au><au>Das, Sudev</au><au>Saha, Bidyut B.</au><au>Bhaumik, Swapan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Experimental investigation and optimization of pool boiling heat transfer enhancement over graphene-coated copper surface</atitle><jtitle>Journal of thermal analysis and calorimetry</jtitle><stitle>J Therm Anal Calorim</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>140</volume><issue>3</issue><spage>1393</spage><epage>1411</epage><pages>1393-1411</pages><issn>1388-6150</issn><eissn>1588-2926</eissn><abstract>The current study presents an artificial neural network model used to predict the boiling heat transfer coefficient of different coating thicknesses of a graphene-coated copper surface in the pool boiling experimental setup for deionized water. The surface characterization has been carried out to study the structure, morphology and surface behavior. The investigations are carried out to evaluate the boiling heat transfer coefficient, heat flux and wall superheat for various thicknesses of nano-coated surfaces experimentally, and the obtained results are compared with those of the reported studies and existing empirical correlations. After that, these results are compared with the outputs such as current, heat flux, wall superheat and boiling heat transfer coefficient obtained using a MATLAB-based artificial neural network model with coating thickness, surface roughness and voltage as input variables. The admirable accuracies are obtained with the predicted optimal model outputs with experimental observation in each test case.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1007/s10973-019-08740-5</doi><tpages>19</tpages><orcidid>https://orcid.org/0000-0002-8781-7122</orcidid><orcidid>https://orcid.org/0000-0002-9902-2642</orcidid><orcidid>https://orcid.org/0000-0002-5253-9302</orcidid><orcidid>https://orcid.org/0000-0001-9774-4150</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1388-6150
ispartof Journal of thermal analysis and calorimetry, 2020-05, Vol.140 (3), p.1393-1411
issn 1388-6150
1588-2926
language eng
recordid cdi_proquest_journals_2386946258
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Analytical Chemistry
Artificial neural networks
Boiling
Chemistry
Chemistry and Materials Science
Coating
Coatings
Copper
Copper products
Correlation analysis
Deionization
Graphene
Graphite
Heat flux
Heat transfer
Heat transfer coefficients
Inorganic Chemistry
Measurement Science and Instrumentation
Morphology
Neural networks
Optimization
Physical Chemistry
Polymer Sciences
Surface properties
Surface roughness
Temperature
Thickness
title Experimental investigation and optimization of pool boiling heat transfer enhancement over graphene-coated copper surface
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A14%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Experimental%20investigation%20and%20optimization%20of%20pool%20boiling%20heat%20transfer%20enhancement%20over%20graphene-coated%20copper%20surface&rft.jtitle=Journal%20of%20thermal%20analysis%20and%20calorimetry&rft.au=Gajghate,%20Sameer%20S.&rft.date=2020-05-01&rft.volume=140&rft.issue=3&rft.spage=1393&rft.epage=1411&rft.pages=1393-1411&rft.issn=1388-6150&rft.eissn=1588-2926&rft_id=info:doi/10.1007/s10973-019-08740-5&rft_dat=%3Cgale_proqu%3EA619660266%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c429t-2318c364a991bab336ecc43718c27e62cacf887166f656baf61158fa67e919c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2386946258&rft_id=info:pmid/&rft_galeid=A619660266&rfr_iscdi=true