Loading…
Bubble-assisted Liquid Hole Multipliers in LXe and LAr: towards “local dual-phase TPCs”
The bubble-assisted Liquid Hole Multiplier (LHM) is a novel concept for the combined detection of ionization electrons and scintillation photons in noble-liquid time projection chambers. It consists of a perforated electrode immersed in the noble liquid, with heating wires generating a stable vapor...
Saved in:
Published in: | Journal of instrumentation 2020-04, Vol.15 (4), p.C04002-C04002 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The bubble-assisted Liquid Hole Multiplier (LHM) is a novel concept for the combined detection of ionization electrons and scintillation photons in noble-liquid time projection chambers. It consists of a perforated electrode immersed in the noble liquid, with heating wires generating a stable vapor bubble underneath. Radiation-induced ionization electrons in the liquid drift into the electrode's holes and cross the liquid-vapor interface into the bubble where they induce electroluminescence (EL). The top surface of the electrode is optionally coated with a CsI photocathode; radiation-induced UV-scintillation photons extract photoelectrons that induce EL in a similar way. EL-photons recorded with an array of photo-sensors, e.g. SiPMs, provide event localization. We present the basic principles of the LHM concept and summarize the results obtained in LXe and LAr. |
---|---|
ISSN: | 1748-0221 1748-0221 |
DOI: | 10.1088/1748-0221/15/04/C04002 |