Loading…
Terahertz Excitonics in Carbon Nanotubes: Exciton Autoionization and Multiplication
Excitons play major roles in optical processes in modern semiconductors, such as single-wall carbon nanotubes (SWCNTs), transition metal dichalcogenides, and 2D perovskite quantum wells. They possess extremely large binding energies (>100~meV), dominating absorption and emission spectra even at h...
Saved in:
Published in: | arXiv.org 2020-04 |
---|---|
Main Authors: | , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Filchito Renee G Bagsican Wais, Michael Komatsu, Natsumi Gao, Weilu Weber, Lincoln W Serita, Kazunori Murakami, Hironaru Held, Karsten Hegmann, Frank A Tonouchi, Masayoshi Kono, Junichiro Kawayama, Iwao Battiato, Marco |
description | Excitons play major roles in optical processes in modern semiconductors, such as single-wall carbon nanotubes (SWCNTs), transition metal dichalcogenides, and 2D perovskite quantum wells. They possess extremely large binding energies (>100~meV), dominating absorption and emission spectra even at high temperatures. The large binding energies imply that they are stable, that is, hard to ionize, rendering them seemingly unsuited for optoelectronic devices that require mobile charge carriers, especially terahertz emitters and solar cells. Here, we have conducted terahertz emission and photocurrent studies on films of aligned single-chirality semiconducting SWCNTs and find that excitons autoionize, i.e., spontaneously dissociate into electrons and holes. This process naturally occurs ultrafast ( |
doi_str_mv | 10.48550/arxiv.2004.02615 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2387117402</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387117402</sourcerecordid><originalsourceid>FETCH-LOGICAL-a522-598f19585d2f9bf30fb41ac27e3186cbfd7fb5dca74bf8912a77c69e428eb73e3</originalsourceid><addsrcrecordid>eNo1jUtrAyEYRaVQaEjzA7oTup6pfurodBdC-oC0XXT2QR2lhkHT0Skhv75DH6sD91zuReiGkporIcidHk_hqwZCeE2goeICLYAxWikOcIVWOR8ImYUEIdgCvXdu1B9uLGe8PdlQUgw24xDxRo8mRfyqYyqTcfn-3-P1VFKYe2ddZmAde_wyDSUch2B_omt06fWQ3eqPS9Q9bLvNU7V7e3zerHeVFgCVaJWnrVCiB98az4g3nGoL0jGqGmt8L70RvdWSG69aClpK27SOg3JGMseW6PZ39jimz8nlsj-kaYzz4x6YkpRKToB9A7awUuc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387117402</pqid></control><display><type>article</type><title>Terahertz Excitonics in Carbon Nanotubes: Exciton Autoionization and Multiplication</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Filchito Renee G Bagsican ; Wais, Michael ; Komatsu, Natsumi ; Gao, Weilu ; Weber, Lincoln W ; Serita, Kazunori ; Murakami, Hironaru ; Held, Karsten ; Hegmann, Frank A ; Tonouchi, Masayoshi ; Kono, Junichiro ; Kawayama, Iwao ; Battiato, Marco</creator><creatorcontrib>Filchito Renee G Bagsican ; Wais, Michael ; Komatsu, Natsumi ; Gao, Weilu ; Weber, Lincoln W ; Serita, Kazunori ; Murakami, Hironaru ; Held, Karsten ; Hegmann, Frank A ; Tonouchi, Masayoshi ; Kono, Junichiro ; Kawayama, Iwao ; Battiato, Marco</creatorcontrib><description>Excitons play major roles in optical processes in modern semiconductors, such as single-wall carbon nanotubes (SWCNTs), transition metal dichalcogenides, and 2D perovskite quantum wells. They possess extremely large binding energies (>100~meV), dominating absorption and emission spectra even at high temperatures. The large binding energies imply that they are stable, that is, hard to ionize, rendering them seemingly unsuited for optoelectronic devices that require mobile charge carriers, especially terahertz emitters and solar cells. Here, we have conducted terahertz emission and photocurrent studies on films of aligned single-chirality semiconducting SWCNTs and find that excitons autoionize, i.e., spontaneously dissociate into electrons and holes. This process naturally occurs ultrafast (<1~ps) while conserving energy and momentum. The created carriers can then be accelerated to emit a burst of terahertz radiation when a dc bias is applied, with promising efficiency in comparison to standard GaAs-based emitters. Furthermore, at high bias, the accelerated carriers acquire high enough kinetic energy to create secondary excitons through impact exciton generation, again in a fully energy and momentum conserving fashion. This exciton multiplication process leads to a nonlinear photocurrent increase as a function of bias. Our theoretical simulations based on nonequilibrium Boltzmann transport equations, taking into account all possible scattering pathways and a realistic band structure, reproduce all our experimental data semi-quantitatively. These results not only elucidate the momentum-dependent ultrafast dynamics of excitons and carriers in SWCNTs but also suggest promising routes toward terahertz excitonics despite the orders-of-magnitude mismatch between the exciton binding energies and the terahertz photon energies.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2004.02615</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Autoionization ; Bias ; Binding energy ; Chirality ; Current carriers ; Electronic devices ; Emission analysis ; Emission spectra ; Emitters ; Emitters (electron) ; Energy conservation ; Excitons ; Kinetic energy ; Momentum ; Multi wall carbon nanotubes ; Multiplication ; Optoelectronic devices ; Perovskites ; Photoelectric effect ; Photoelectric emission ; Photovoltaic cells ; Quantum wells ; Single wall carbon nanotubes ; Solar cells ; Transition metal compounds</subject><ispartof>arXiv.org, 2020-04</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2387117402?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Filchito Renee G Bagsican</creatorcontrib><creatorcontrib>Wais, Michael</creatorcontrib><creatorcontrib>Komatsu, Natsumi</creatorcontrib><creatorcontrib>Gao, Weilu</creatorcontrib><creatorcontrib>Weber, Lincoln W</creatorcontrib><creatorcontrib>Serita, Kazunori</creatorcontrib><creatorcontrib>Murakami, Hironaru</creatorcontrib><creatorcontrib>Held, Karsten</creatorcontrib><creatorcontrib>Hegmann, Frank A</creatorcontrib><creatorcontrib>Tonouchi, Masayoshi</creatorcontrib><creatorcontrib>Kono, Junichiro</creatorcontrib><creatorcontrib>Kawayama, Iwao</creatorcontrib><creatorcontrib>Battiato, Marco</creatorcontrib><title>Terahertz Excitonics in Carbon Nanotubes: Exciton Autoionization and Multiplication</title><title>arXiv.org</title><description>Excitons play major roles in optical processes in modern semiconductors, such as single-wall carbon nanotubes (SWCNTs), transition metal dichalcogenides, and 2D perovskite quantum wells. They possess extremely large binding energies (>100~meV), dominating absorption and emission spectra even at high temperatures. The large binding energies imply that they are stable, that is, hard to ionize, rendering them seemingly unsuited for optoelectronic devices that require mobile charge carriers, especially terahertz emitters and solar cells. Here, we have conducted terahertz emission and photocurrent studies on films of aligned single-chirality semiconducting SWCNTs and find that excitons autoionize, i.e., spontaneously dissociate into electrons and holes. This process naturally occurs ultrafast (<1~ps) while conserving energy and momentum. The created carriers can then be accelerated to emit a burst of terahertz radiation when a dc bias is applied, with promising efficiency in comparison to standard GaAs-based emitters. Furthermore, at high bias, the accelerated carriers acquire high enough kinetic energy to create secondary excitons through impact exciton generation, again in a fully energy and momentum conserving fashion. This exciton multiplication process leads to a nonlinear photocurrent increase as a function of bias. Our theoretical simulations based on nonequilibrium Boltzmann transport equations, taking into account all possible scattering pathways and a realistic band structure, reproduce all our experimental data semi-quantitatively. These results not only elucidate the momentum-dependent ultrafast dynamics of excitons and carriers in SWCNTs but also suggest promising routes toward terahertz excitonics despite the orders-of-magnitude mismatch between the exciton binding energies and the terahertz photon energies.</description><subject>Autoionization</subject><subject>Bias</subject><subject>Binding energy</subject><subject>Chirality</subject><subject>Current carriers</subject><subject>Electronic devices</subject><subject>Emission analysis</subject><subject>Emission spectra</subject><subject>Emitters</subject><subject>Emitters (electron)</subject><subject>Energy conservation</subject><subject>Excitons</subject><subject>Kinetic energy</subject><subject>Momentum</subject><subject>Multi wall carbon nanotubes</subject><subject>Multiplication</subject><subject>Optoelectronic devices</subject><subject>Perovskites</subject><subject>Photoelectric effect</subject><subject>Photoelectric emission</subject><subject>Photovoltaic cells</subject><subject>Quantum wells</subject><subject>Single wall carbon nanotubes</subject><subject>Solar cells</subject><subject>Transition metal compounds</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNo1jUtrAyEYRaVQaEjzA7oTup6pfurodBdC-oC0XXT2QR2lhkHT0Skhv75DH6sD91zuReiGkporIcidHk_hqwZCeE2goeICLYAxWikOcIVWOR8ImYUEIdgCvXdu1B9uLGe8PdlQUgw24xDxRo8mRfyqYyqTcfn-3-P1VFKYe2ddZmAde_wyDSUch2B_omt06fWQ3eqPS9Q9bLvNU7V7e3zerHeVFgCVaJWnrVCiB98az4g3nGoL0jGqGmt8L70RvdWSG69aClpK27SOg3JGMseW6PZ39jimz8nlsj-kaYzz4x6YkpRKToB9A7awUuc</recordid><startdate>20200406</startdate><enddate>20200406</enddate><creator>Filchito Renee G Bagsican</creator><creator>Wais, Michael</creator><creator>Komatsu, Natsumi</creator><creator>Gao, Weilu</creator><creator>Weber, Lincoln W</creator><creator>Serita, Kazunori</creator><creator>Murakami, Hironaru</creator><creator>Held, Karsten</creator><creator>Hegmann, Frank A</creator><creator>Tonouchi, Masayoshi</creator><creator>Kono, Junichiro</creator><creator>Kawayama, Iwao</creator><creator>Battiato, Marco</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200406</creationdate><title>Terahertz Excitonics in Carbon Nanotubes: Exciton Autoionization and Multiplication</title><author>Filchito Renee G Bagsican ; Wais, Michael ; Komatsu, Natsumi ; Gao, Weilu ; Weber, Lincoln W ; Serita, Kazunori ; Murakami, Hironaru ; Held, Karsten ; Hegmann, Frank A ; Tonouchi, Masayoshi ; Kono, Junichiro ; Kawayama, Iwao ; Battiato, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a522-598f19585d2f9bf30fb41ac27e3186cbfd7fb5dca74bf8912a77c69e428eb73e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Autoionization</topic><topic>Bias</topic><topic>Binding energy</topic><topic>Chirality</topic><topic>Current carriers</topic><topic>Electronic devices</topic><topic>Emission analysis</topic><topic>Emission spectra</topic><topic>Emitters</topic><topic>Emitters (electron)</topic><topic>Energy conservation</topic><topic>Excitons</topic><topic>Kinetic energy</topic><topic>Momentum</topic><topic>Multi wall carbon nanotubes</topic><topic>Multiplication</topic><topic>Optoelectronic devices</topic><topic>Perovskites</topic><topic>Photoelectric effect</topic><topic>Photoelectric emission</topic><topic>Photovoltaic cells</topic><topic>Quantum wells</topic><topic>Single wall carbon nanotubes</topic><topic>Solar cells</topic><topic>Transition metal compounds</topic><toplevel>online_resources</toplevel><creatorcontrib>Filchito Renee G Bagsican</creatorcontrib><creatorcontrib>Wais, Michael</creatorcontrib><creatorcontrib>Komatsu, Natsumi</creatorcontrib><creatorcontrib>Gao, Weilu</creatorcontrib><creatorcontrib>Weber, Lincoln W</creatorcontrib><creatorcontrib>Serita, Kazunori</creatorcontrib><creatorcontrib>Murakami, Hironaru</creatorcontrib><creatorcontrib>Held, Karsten</creatorcontrib><creatorcontrib>Hegmann, Frank A</creatorcontrib><creatorcontrib>Tonouchi, Masayoshi</creatorcontrib><creatorcontrib>Kono, Junichiro</creatorcontrib><creatorcontrib>Kawayama, Iwao</creatorcontrib><creatorcontrib>Battiato, Marco</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Filchito Renee G Bagsican</au><au>Wais, Michael</au><au>Komatsu, Natsumi</au><au>Gao, Weilu</au><au>Weber, Lincoln W</au><au>Serita, Kazunori</au><au>Murakami, Hironaru</au><au>Held, Karsten</au><au>Hegmann, Frank A</au><au>Tonouchi, Masayoshi</au><au>Kono, Junichiro</au><au>Kawayama, Iwao</au><au>Battiato, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Terahertz Excitonics in Carbon Nanotubes: Exciton Autoionization and Multiplication</atitle><jtitle>arXiv.org</jtitle><date>2020-04-06</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Excitons play major roles in optical processes in modern semiconductors, such as single-wall carbon nanotubes (SWCNTs), transition metal dichalcogenides, and 2D perovskite quantum wells. They possess extremely large binding energies (>100~meV), dominating absorption and emission spectra even at high temperatures. The large binding energies imply that they are stable, that is, hard to ionize, rendering them seemingly unsuited for optoelectronic devices that require mobile charge carriers, especially terahertz emitters and solar cells. Here, we have conducted terahertz emission and photocurrent studies on films of aligned single-chirality semiconducting SWCNTs and find that excitons autoionize, i.e., spontaneously dissociate into electrons and holes. This process naturally occurs ultrafast (<1~ps) while conserving energy and momentum. The created carriers can then be accelerated to emit a burst of terahertz radiation when a dc bias is applied, with promising efficiency in comparison to standard GaAs-based emitters. Furthermore, at high bias, the accelerated carriers acquire high enough kinetic energy to create secondary excitons through impact exciton generation, again in a fully energy and momentum conserving fashion. This exciton multiplication process leads to a nonlinear photocurrent increase as a function of bias. Our theoretical simulations based on nonequilibrium Boltzmann transport equations, taking into account all possible scattering pathways and a realistic band structure, reproduce all our experimental data semi-quantitatively. These results not only elucidate the momentum-dependent ultrafast dynamics of excitons and carriers in SWCNTs but also suggest promising routes toward terahertz excitonics despite the orders-of-magnitude mismatch between the exciton binding energies and the terahertz photon energies.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2004.02615</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2387117402 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Autoionization Bias Binding energy Chirality Current carriers Electronic devices Emission analysis Emission spectra Emitters Emitters (electron) Energy conservation Excitons Kinetic energy Momentum Multi wall carbon nanotubes Multiplication Optoelectronic devices Perovskites Photoelectric effect Photoelectric emission Photovoltaic cells Quantum wells Single wall carbon nanotubes Solar cells Transition metal compounds |
title | Terahertz Excitonics in Carbon Nanotubes: Exciton Autoionization and Multiplication |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T00%3A56%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Terahertz%20Excitonics%20in%20Carbon%20Nanotubes:%20Exciton%20Autoionization%20and%20Multiplication&rft.jtitle=arXiv.org&rft.au=Filchito%20Renee%20G%20Bagsican&rft.date=2020-04-06&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2004.02615&rft_dat=%3Cproquest%3E2387117402%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a522-598f19585d2f9bf30fb41ac27e3186cbfd7fb5dca74bf8912a77c69e428eb73e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2387117402&rft_id=info:pmid/&rfr_iscdi=true |