Loading…

Soliton Solutions of Noncommutative Anti-Self-Dual Yang-Mills Equations

We present exact soliton solutions of anti-self-dual Yang-Mills equations for G=GL(N) on noncommutative Euclidean spaces in four-dimension by using the Darboux transformations. Generated solutions are represented by quasideterminants of Wronski matrices in compact forms. We give special one-soliton...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-07
Main Authors: Gilson, Claire R, Hamanaka, Masashi, Shan-Chi, Huang, Nimmo, Jonathan J C
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gilson, Claire R
Hamanaka, Masashi
Shan-Chi, Huang
Nimmo, Jonathan J C
description We present exact soliton solutions of anti-self-dual Yang-Mills equations for G=GL(N) on noncommutative Euclidean spaces in four-dimension by using the Darboux transformations. Generated solutions are represented by quasideterminants of Wronski matrices in compact forms. We give special one-soliton solutions for G=GL(2) whose energy density can be real-valued. We find that the soliton solutions are the same as the commutative ones and can be interpreted as one-domain walls in four-dimension. Scattering processes of the multi-soliton solutions are also discussed.
doi_str_mv 10.48550/arxiv.2004.01718
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2387117888</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387117888</sourcerecordid><originalsourceid>FETCH-LOGICAL-a528-db36acbef9dc0db87e5779b41097f55dca610e54a8ce69915e17920ebb18715d3</originalsourceid><addsrcrecordid>eNotjUFPwyAYhomJicvcD_BG4pn6AaXAcZlzmkw9bBdPC7TUsDBwhS7-fBv19Fze530QuqNQ1UoIeDDDt79UDKCugEqqrtCMcU6Jqhm7QYucjwDAGsmE4DO02aXgS4p44lh8ihmnHr-l2KbTaSym-IvDy1g82bnQk8fRBPxh4id59SFkvD6P5te6Rde9Cdkt_jlH-6f1fvVMtu-bl9VyS4xginSWN6a1rtddC51V0gkpta0paNkL0bWmoeBEbVTrGq2pcFRqBs5aqiQVHZ-j-7_bryGdR5fL4ZjGIU7FA-PThEqlFP8BD0JNqA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387117888</pqid></control><display><type>article</type><title>Soliton Solutions of Noncommutative Anti-Self-Dual Yang-Mills Equations</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Gilson, Claire R ; Hamanaka, Masashi ; Shan-Chi, Huang ; Nimmo, Jonathan J C</creator><creatorcontrib>Gilson, Claire R ; Hamanaka, Masashi ; Shan-Chi, Huang ; Nimmo, Jonathan J C</creatorcontrib><description>We present exact soliton solutions of anti-self-dual Yang-Mills equations for G=GL(N) on noncommutative Euclidean spaces in four-dimension by using the Darboux transformations. Generated solutions are represented by quasideterminants of Wronski matrices in compact forms. We give special one-soliton solutions for G=GL(2) whose energy density can be real-valued. We find that the soliton solutions are the same as the commutative ones and can be interpreted as one-domain walls in four-dimension. Scattering processes of the multi-soliton solutions are also discussed.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2004.01718</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Domain walls ; Euclidean geometry ; Flux density ; Mathematical analysis ; Solitary waves</subject><ispartof>arXiv.org, 2020-07</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2387117888?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Gilson, Claire R</creatorcontrib><creatorcontrib>Hamanaka, Masashi</creatorcontrib><creatorcontrib>Shan-Chi, Huang</creatorcontrib><creatorcontrib>Nimmo, Jonathan J C</creatorcontrib><title>Soliton Solutions of Noncommutative Anti-Self-Dual Yang-Mills Equations</title><title>arXiv.org</title><description>We present exact soliton solutions of anti-self-dual Yang-Mills equations for G=GL(N) on noncommutative Euclidean spaces in four-dimension by using the Darboux transformations. Generated solutions are represented by quasideterminants of Wronski matrices in compact forms. We give special one-soliton solutions for G=GL(2) whose energy density can be real-valued. We find that the soliton solutions are the same as the commutative ones and can be interpreted as one-domain walls in four-dimension. Scattering processes of the multi-soliton solutions are also discussed.</description><subject>Domain walls</subject><subject>Euclidean geometry</subject><subject>Flux density</subject><subject>Mathematical analysis</subject><subject>Solitary waves</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjUFPwyAYhomJicvcD_BG4pn6AaXAcZlzmkw9bBdPC7TUsDBwhS7-fBv19Fze530QuqNQ1UoIeDDDt79UDKCugEqqrtCMcU6Jqhm7QYucjwDAGsmE4DO02aXgS4p44lh8ihmnHr-l2KbTaSym-IvDy1g82bnQk8fRBPxh4id59SFkvD6P5te6Rde9Cdkt_jlH-6f1fvVMtu-bl9VyS4xginSWN6a1rtddC51V0gkpta0paNkL0bWmoeBEbVTrGq2pcFRqBs5aqiQVHZ-j-7_bryGdR5fL4ZjGIU7FA-PThEqlFP8BD0JNqA</recordid><startdate>20200723</startdate><enddate>20200723</enddate><creator>Gilson, Claire R</creator><creator>Hamanaka, Masashi</creator><creator>Shan-Chi, Huang</creator><creator>Nimmo, Jonathan J C</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200723</creationdate><title>Soliton Solutions of Noncommutative Anti-Self-Dual Yang-Mills Equations</title><author>Gilson, Claire R ; Hamanaka, Masashi ; Shan-Chi, Huang ; Nimmo, Jonathan J C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a528-db36acbef9dc0db87e5779b41097f55dca610e54a8ce69915e17920ebb18715d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Domain walls</topic><topic>Euclidean geometry</topic><topic>Flux density</topic><topic>Mathematical analysis</topic><topic>Solitary waves</topic><toplevel>online_resources</toplevel><creatorcontrib>Gilson, Claire R</creatorcontrib><creatorcontrib>Hamanaka, Masashi</creatorcontrib><creatorcontrib>Shan-Chi, Huang</creatorcontrib><creatorcontrib>Nimmo, Jonathan J C</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gilson, Claire R</au><au>Hamanaka, Masashi</au><au>Shan-Chi, Huang</au><au>Nimmo, Jonathan J C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Soliton Solutions of Noncommutative Anti-Self-Dual Yang-Mills Equations</atitle><jtitle>arXiv.org</jtitle><date>2020-07-23</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We present exact soliton solutions of anti-self-dual Yang-Mills equations for G=GL(N) on noncommutative Euclidean spaces in four-dimension by using the Darboux transformations. Generated solutions are represented by quasideterminants of Wronski matrices in compact forms. We give special one-soliton solutions for G=GL(2) whose energy density can be real-valued. We find that the soliton solutions are the same as the commutative ones and can be interpreted as one-domain walls in four-dimension. Scattering processes of the multi-soliton solutions are also discussed.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2004.01718</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-07
issn 2331-8422
language eng
recordid cdi_proquest_journals_2387117888
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Domain walls
Euclidean geometry
Flux density
Mathematical analysis
Solitary waves
title Soliton Solutions of Noncommutative Anti-Self-Dual Yang-Mills Equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T02%3A53%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Soliton%20Solutions%20of%20Noncommutative%20Anti-Self-Dual%20Yang-Mills%20Equations&rft.jtitle=arXiv.org&rft.au=Gilson,%20Claire%20R&rft.date=2020-07-23&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2004.01718&rft_dat=%3Cproquest%3E2387117888%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a528-db36acbef9dc0db87e5779b41097f55dca610e54a8ce69915e17920ebb18715d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2387117888&rft_id=info:pmid/&rfr_iscdi=true