Loading…

Quantum direct communication protocols using discrete-time quantum walk

The unique features of quantum walk, such as the possibility of the walker to be in superposition ofthe position space and get entangled with the position space, provides inherent advantages that canbe captured to design highly secure quantum communication protocols. Here we propose two quan-tum dir...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-08
Main Authors: Srikara, S, Chandrashekar, C M
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Srikara, S
Chandrashekar, C M
description The unique features of quantum walk, such as the possibility of the walker to be in superposition ofthe position space and get entangled with the position space, provides inherent advantages that canbe captured to design highly secure quantum communication protocols. Here we propose two quan-tum direct communication protocols, a Quantum Secure Direct Communication (QSDC) protocoland a Controlled Quantum Dialogue (CQD) protocol using discrete-time quantum walk on a cycle.The proposed protocols are unconditionally secure against various attacks such as the intercept-resend attack, the denial of service attack, and the man-in-the-middle attack. Additionally, theproposed CQD protocol is shown to be unconditionally secure against an untrusted service providerand both the protocols are shown more secure against the intercept resend attack as compared tothe qubit based LM05/DL04 protocol.
doi_str_mv 10.48550/arxiv.2004.03273
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2387523141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387523141</sourcerecordid><originalsourceid>FETCH-LOGICAL-a521-6049f35db9e0b90df18a3ca4282da96070afd82895c28c0cf14245596b22df273</originalsourceid><addsrcrecordid>eNotj01LxDAYhIMguKz7A7wVPLe-eZO0yVEWXYUFEfa-pPmQrG3jNon68y24p7nMPDNDyB2Fhksh4EHPv-G7QQDeAMOOXZEVMkZryRFvyCalEwBg26EQbEV270VPuYyVDbMzuTJxHMsUjM4hTtXXHHM0cUhVSWH6WEzJzC67OofRVedL9EcPn7fk2ushuc1F1-Tw_HTYvtT7t93r9nFfa4G0boErz4TtlYNegfVUamY0R4lWqxY60N5KlEoYlAaMpxy5EKrtEa1fzqzJ_T92WXYuLuXjKZZ5WhqPyGQnkFFO2R9_Y03f</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387523141</pqid></control><display><type>article</type><title>Quantum direct communication protocols using discrete-time quantum walk</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Srikara, S ; Chandrashekar, C M</creator><creatorcontrib>Srikara, S ; Chandrashekar, C M</creatorcontrib><description>The unique features of quantum walk, such as the possibility of the walker to be in superposition ofthe position space and get entangled with the position space, provides inherent advantages that canbe captured to design highly secure quantum communication protocols. Here we propose two quan-tum direct communication protocols, a Quantum Secure Direct Communication (QSDC) protocoland a Controlled Quantum Dialogue (CQD) protocol using discrete-time quantum walk on a cycle.The proposed protocols are unconditionally secure against various attacks such as the intercept-resend attack, the denial of service attack, and the man-in-the-middle attack. Additionally, theproposed CQD protocol is shown to be unconditionally secure against an untrusted service providerand both the protocols are shown more secure against the intercept resend attack as compared tothe qubit based LM05/DL04 protocol.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2004.03273</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Communication ; Denial of service attacks ; Protocol ; Qubits (quantum computing)</subject><ispartof>arXiv.org, 2020-08</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2387523141?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25752,27924,37011,44589</link.rule.ids></links><search><creatorcontrib>Srikara, S</creatorcontrib><creatorcontrib>Chandrashekar, C M</creatorcontrib><title>Quantum direct communication protocols using discrete-time quantum walk</title><title>arXiv.org</title><description>The unique features of quantum walk, such as the possibility of the walker to be in superposition ofthe position space and get entangled with the position space, provides inherent advantages that canbe captured to design highly secure quantum communication protocols. Here we propose two quan-tum direct communication protocols, a Quantum Secure Direct Communication (QSDC) protocoland a Controlled Quantum Dialogue (CQD) protocol using discrete-time quantum walk on a cycle.The proposed protocols are unconditionally secure against various attacks such as the intercept-resend attack, the denial of service attack, and the man-in-the-middle attack. Additionally, theproposed CQD protocol is shown to be unconditionally secure against an untrusted service providerand both the protocols are shown more secure against the intercept resend attack as compared tothe qubit based LM05/DL04 protocol.</description><subject>Communication</subject><subject>Denial of service attacks</subject><subject>Protocol</subject><subject>Qubits (quantum computing)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotj01LxDAYhIMguKz7A7wVPLe-eZO0yVEWXYUFEfa-pPmQrG3jNon68y24p7nMPDNDyB2Fhksh4EHPv-G7QQDeAMOOXZEVMkZryRFvyCalEwBg26EQbEV270VPuYyVDbMzuTJxHMsUjM4hTtXXHHM0cUhVSWH6WEzJzC67OofRVedL9EcPn7fk2ushuc1F1-Tw_HTYvtT7t93r9nFfa4G0boErz4TtlYNegfVUamY0R4lWqxY60N5KlEoYlAaMpxy5EKrtEa1fzqzJ_T92WXYuLuXjKZZ5WhqPyGQnkFFO2R9_Y03f</recordid><startdate>20200826</startdate><enddate>20200826</enddate><creator>Srikara, S</creator><creator>Chandrashekar, C M</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200826</creationdate><title>Quantum direct communication protocols using discrete-time quantum walk</title><author>Srikara, S ; Chandrashekar, C M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a521-6049f35db9e0b90df18a3ca4282da96070afd82895c28c0cf14245596b22df273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Communication</topic><topic>Denial of service attacks</topic><topic>Protocol</topic><topic>Qubits (quantum computing)</topic><toplevel>online_resources</toplevel><creatorcontrib>Srikara, S</creatorcontrib><creatorcontrib>Chandrashekar, C M</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Srikara, S</au><au>Chandrashekar, C M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum direct communication protocols using discrete-time quantum walk</atitle><jtitle>arXiv.org</jtitle><date>2020-08-26</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>The unique features of quantum walk, such as the possibility of the walker to be in superposition ofthe position space and get entangled with the position space, provides inherent advantages that canbe captured to design highly secure quantum communication protocols. Here we propose two quan-tum direct communication protocols, a Quantum Secure Direct Communication (QSDC) protocoland a Controlled Quantum Dialogue (CQD) protocol using discrete-time quantum walk on a cycle.The proposed protocols are unconditionally secure against various attacks such as the intercept-resend attack, the denial of service attack, and the man-in-the-middle attack. Additionally, theproposed CQD protocol is shown to be unconditionally secure against an untrusted service providerand both the protocols are shown more secure against the intercept resend attack as compared tothe qubit based LM05/DL04 protocol.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2004.03273</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2387523141
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Communication
Denial of service attacks
Protocol
Qubits (quantum computing)
title Quantum direct communication protocols using discrete-time quantum walk
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T12%3A55%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20direct%20communication%20protocols%20using%20discrete-time%20quantum%20walk&rft.jtitle=arXiv.org&rft.au=Srikara,%20S&rft.date=2020-08-26&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2004.03273&rft_dat=%3Cproquest%3E2387523141%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a521-6049f35db9e0b90df18a3ca4282da96070afd82895c28c0cf14245596b22df273%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2387523141&rft_id=info:pmid/&rfr_iscdi=true