Loading…
Linking discrete particle simulation to continuum properties of the gas fluidization of cohesive particles
Discrete particle simulation can explicitly consider interparticle forces and obtain microscopic properties of the fluidized cohesive particles, but it is computationally expensive. It is thus pivotal to link the microscopic discrete properties to the macroscopic continuum description of the system...
Saved in:
Published in: | AIChE journal 2020-05, Vol.66 (5), p.n/a |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3344-dff9e5fa814d4697b58c89d429735582bcecaf8299d63659f076caa8163e30713 |
---|---|
cites | cdi_FETCH-LOGICAL-c3344-dff9e5fa814d4697b58c89d429735582bcecaf8299d63659f076caa8163e30713 |
container_end_page | n/a |
container_issue | 5 |
container_start_page | |
container_title | AIChE journal |
container_volume | 66 |
creator | Wu, Yongli Hou, Qinfu Yu, Aibing |
description | Discrete particle simulation can explicitly consider interparticle forces and obtain microscopic properties of the fluidized cohesive particles, but it is computationally expensive. It is thus pivotal to link the microscopic discrete properties to the macroscopic continuum description of the system for large scale applications. This work studies the fluidization of cohesive particles through the coupled computational fluid dynamics and discrete element method (CFD‐DEM). First, discrete CFD‐DEM results show the increased particle cohesion leads to the severe particle agglomeration which affects the fluidization quality significantly. Then, continuum properties are attained by a weighted time‐volume averaging method, showing that tensile pressure becomes significant as particle cohesion increases. By incorporating Rumpf correlation into the solid pressure equation, the tensile pressure could be predicted consistently with the averaged CFD‐DEM results for different particle cohesion. Finally, those overall steady averaged properties of the bed are obtained for understanding the general macroscopic properties of the system. |
doi_str_mv | 10.1002/aic.16944 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2387537137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387537137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3344-dff9e5fa814d4697b58c89d429735582bcecaf8299d63659f076caa8163e30713</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgCtbqwX8Q8ORh23xuNsdS_CgUvOg5pNmkTd1u1mRXqb_e6AqePA0ZnswMLwDXGM0wQmSuvZnhUjJ2AiaYM1FwifgpmCCEcJEb-BxcpLTPLyIqMgH7tW9ffbuFtU8m2t7CTsfem8bC5A9Do3sfWtgHaELb-3YYDrCLobPZ2ASDg_3Owq1O0DWDr_3n6HPfhJ1N_v1vXroEZ043yV791il4ub97Xj4W66eH1XKxLgyljBW1c9JypyvMalZKseGVqWTNiBSU84psjDXaVUTKuqQllw6J0ujMS2opEphOwc04Nx_6NtjUq30YYptXKkIrwWk2IqvbUZkYUorWqS76g45HhZH6jlLlKNVPlNnOR_vhG3v8H6rFajn--AL2a3a5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387537137</pqid></control><display><type>article</type><title>Linking discrete particle simulation to continuum properties of the gas fluidization of cohesive particles</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Wu, Yongli ; Hou, Qinfu ; Yu, Aibing</creator><creatorcontrib>Wu, Yongli ; Hou, Qinfu ; Yu, Aibing</creatorcontrib><description>Discrete particle simulation can explicitly consider interparticle forces and obtain microscopic properties of the fluidized cohesive particles, but it is computationally expensive. It is thus pivotal to link the microscopic discrete properties to the macroscopic continuum description of the system for large scale applications. This work studies the fluidization of cohesive particles through the coupled computational fluid dynamics and discrete element method (CFD‐DEM). First, discrete CFD‐DEM results show the increased particle cohesion leads to the severe particle agglomeration which affects the fluidization quality significantly. Then, continuum properties are attained by a weighted time‐volume averaging method, showing that tensile pressure becomes significant as particle cohesion increases. By incorporating Rumpf correlation into the solid pressure equation, the tensile pressure could be predicted consistently with the averaged CFD‐DEM results for different particle cohesion. Finally, those overall steady averaged properties of the bed are obtained for understanding the general macroscopic properties of the system.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.16944</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley & Sons, Inc</publisher><subject>agglomeration ; averaging method ; CFD‐DEM ; Cohesion ; cohesive particle ; Computational fluid dynamics ; Computer applications ; Computer simulation ; Discrete element method ; Fluid dynamics ; Fluidization ; Fluidizing ; Hydrodynamics ; Pressure ; Properties (attributes)</subject><ispartof>AIChE journal, 2020-05, Vol.66 (5), p.n/a</ispartof><rights>2020 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3344-dff9e5fa814d4697b58c89d429735582bcecaf8299d63659f076caa8163e30713</citedby><cites>FETCH-LOGICAL-c3344-dff9e5fa814d4697b58c89d429735582bcecaf8299d63659f076caa8163e30713</cites><orcidid>0000-0002-0493-9619 ; 0000-0002-9449-5512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Wu, Yongli</creatorcontrib><creatorcontrib>Hou, Qinfu</creatorcontrib><creatorcontrib>Yu, Aibing</creatorcontrib><title>Linking discrete particle simulation to continuum properties of the gas fluidization of cohesive particles</title><title>AIChE journal</title><description>Discrete particle simulation can explicitly consider interparticle forces and obtain microscopic properties of the fluidized cohesive particles, but it is computationally expensive. It is thus pivotal to link the microscopic discrete properties to the macroscopic continuum description of the system for large scale applications. This work studies the fluidization of cohesive particles through the coupled computational fluid dynamics and discrete element method (CFD‐DEM). First, discrete CFD‐DEM results show the increased particle cohesion leads to the severe particle agglomeration which affects the fluidization quality significantly. Then, continuum properties are attained by a weighted time‐volume averaging method, showing that tensile pressure becomes significant as particle cohesion increases. By incorporating Rumpf correlation into the solid pressure equation, the tensile pressure could be predicted consistently with the averaged CFD‐DEM results for different particle cohesion. Finally, those overall steady averaged properties of the bed are obtained for understanding the general macroscopic properties of the system.</description><subject>agglomeration</subject><subject>averaging method</subject><subject>CFD‐DEM</subject><subject>Cohesion</subject><subject>cohesive particle</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Discrete element method</subject><subject>Fluid dynamics</subject><subject>Fluidization</subject><subject>Fluidizing</subject><subject>Hydrodynamics</subject><subject>Pressure</subject><subject>Properties (attributes)</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQBuAgCtbqwX8Q8ORh23xuNsdS_CgUvOg5pNmkTd1u1mRXqb_e6AqePA0ZnswMLwDXGM0wQmSuvZnhUjJ2AiaYM1FwifgpmCCEcJEb-BxcpLTPLyIqMgH7tW9ffbuFtU8m2t7CTsfem8bC5A9Do3sfWtgHaELb-3YYDrCLobPZ2ASDg_3Owq1O0DWDr_3n6HPfhJ1N_v1vXroEZ043yV791il4ub97Xj4W66eH1XKxLgyljBW1c9JypyvMalZKseGVqWTNiBSU84psjDXaVUTKuqQllw6J0ujMS2opEphOwc04Nx_6NtjUq30YYptXKkIrwWk2IqvbUZkYUorWqS76g45HhZH6jlLlKNVPlNnOR_vhG3v8H6rFajn--AL2a3a5</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Wu, Yongli</creator><creator>Hou, Qinfu</creator><creator>Yu, Aibing</creator><general>John Wiley & Sons, Inc</general><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0493-9619</orcidid><orcidid>https://orcid.org/0000-0002-9449-5512</orcidid></search><sort><creationdate>202005</creationdate><title>Linking discrete particle simulation to continuum properties of the gas fluidization of cohesive particles</title><author>Wu, Yongli ; Hou, Qinfu ; Yu, Aibing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3344-dff9e5fa814d4697b58c89d429735582bcecaf8299d63659f076caa8163e30713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>agglomeration</topic><topic>averaging method</topic><topic>CFD‐DEM</topic><topic>Cohesion</topic><topic>cohesive particle</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Discrete element method</topic><topic>Fluid dynamics</topic><topic>Fluidization</topic><topic>Fluidizing</topic><topic>Hydrodynamics</topic><topic>Pressure</topic><topic>Properties (attributes)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yongli</creatorcontrib><creatorcontrib>Hou, Qinfu</creatorcontrib><creatorcontrib>Yu, Aibing</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yongli</au><au>Hou, Qinfu</au><au>Yu, Aibing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linking discrete particle simulation to continuum properties of the gas fluidization of cohesive particles</atitle><jtitle>AIChE journal</jtitle><date>2020-05</date><risdate>2020</risdate><volume>66</volume><issue>5</issue><epage>n/a</epage><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>Discrete particle simulation can explicitly consider interparticle forces and obtain microscopic properties of the fluidized cohesive particles, but it is computationally expensive. It is thus pivotal to link the microscopic discrete properties to the macroscopic continuum description of the system for large scale applications. This work studies the fluidization of cohesive particles through the coupled computational fluid dynamics and discrete element method (CFD‐DEM). First, discrete CFD‐DEM results show the increased particle cohesion leads to the severe particle agglomeration which affects the fluidization quality significantly. Then, continuum properties are attained by a weighted time‐volume averaging method, showing that tensile pressure becomes significant as particle cohesion increases. By incorporating Rumpf correlation into the solid pressure equation, the tensile pressure could be predicted consistently with the averaged CFD‐DEM results for different particle cohesion. Finally, those overall steady averaged properties of the bed are obtained for understanding the general macroscopic properties of the system.</abstract><cop>Hoboken, USA</cop><pub>John Wiley & Sons, Inc</pub><doi>10.1002/aic.16944</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0493-9619</orcidid><orcidid>https://orcid.org/0000-0002-9449-5512</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0001-1541 |
ispartof | AIChE journal, 2020-05, Vol.66 (5), p.n/a |
issn | 0001-1541 1547-5905 |
language | eng |
recordid | cdi_proquest_journals_2387537137 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | agglomeration averaging method CFD‐DEM Cohesion cohesive particle Computational fluid dynamics Computer applications Computer simulation Discrete element method Fluid dynamics Fluidization Fluidizing Hydrodynamics Pressure Properties (attributes) |
title | Linking discrete particle simulation to continuum properties of the gas fluidization of cohesive particles |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A59%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linking%20discrete%20particle%20simulation%20to%20continuum%20properties%20of%20the%20gas%20fluidization%20of%20cohesive%20particles&rft.jtitle=AIChE%20journal&rft.au=Wu,%20Yongli&rft.date=2020-05&rft.volume=66&rft.issue=5&rft.epage=n/a&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.16944&rft_dat=%3Cproquest_cross%3E2387537137%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3344-dff9e5fa814d4697b58c89d429735582bcecaf8299d63659f076caa8163e30713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2387537137&rft_id=info:pmid/&rfr_iscdi=true |