Loading…

Linking discrete particle simulation to continuum properties of the gas fluidization of cohesive particles

Discrete particle simulation can explicitly consider interparticle forces and obtain microscopic properties of the fluidized cohesive particles, but it is computationally expensive. It is thus pivotal to link the microscopic discrete properties to the macroscopic continuum description of the system...

Full description

Saved in:
Bibliographic Details
Published in:AIChE journal 2020-05, Vol.66 (5), p.n/a
Main Authors: Wu, Yongli, Hou, Qinfu, Yu, Aibing
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3344-dff9e5fa814d4697b58c89d429735582bcecaf8299d63659f076caa8163e30713
cites cdi_FETCH-LOGICAL-c3344-dff9e5fa814d4697b58c89d429735582bcecaf8299d63659f076caa8163e30713
container_end_page n/a
container_issue 5
container_start_page
container_title AIChE journal
container_volume 66
creator Wu, Yongli
Hou, Qinfu
Yu, Aibing
description Discrete particle simulation can explicitly consider interparticle forces and obtain microscopic properties of the fluidized cohesive particles, but it is computationally expensive. It is thus pivotal to link the microscopic discrete properties to the macroscopic continuum description of the system for large scale applications. This work studies the fluidization of cohesive particles through the coupled computational fluid dynamics and discrete element method (CFD‐DEM). First, discrete CFD‐DEM results show the increased particle cohesion leads to the severe particle agglomeration which affects the fluidization quality significantly. Then, continuum properties are attained by a weighted time‐volume averaging method, showing that tensile pressure becomes significant as particle cohesion increases. By incorporating Rumpf correlation into the solid pressure equation, the tensile pressure could be predicted consistently with the averaged CFD‐DEM results for different particle cohesion. Finally, those overall steady averaged properties of the bed are obtained for understanding the general macroscopic properties of the system.
doi_str_mv 10.1002/aic.16944
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2387537137</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387537137</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3344-dff9e5fa814d4697b58c89d429735582bcecaf8299d63659f076caa8163e30713</originalsourceid><addsrcrecordid>eNp10E1LAzEQBuAgCtbqwX8Q8ORh23xuNsdS_CgUvOg5pNmkTd1u1mRXqb_e6AqePA0ZnswMLwDXGM0wQmSuvZnhUjJ2AiaYM1FwifgpmCCEcJEb-BxcpLTPLyIqMgH7tW9ffbuFtU8m2t7CTsfem8bC5A9Do3sfWtgHaELb-3YYDrCLobPZ2ASDg_3Owq1O0DWDr_3n6HPfhJ1N_v1vXroEZ043yV791il4ub97Xj4W66eH1XKxLgyljBW1c9JypyvMalZKseGVqWTNiBSU84psjDXaVUTKuqQllw6J0ujMS2opEphOwc04Nx_6NtjUq30YYptXKkIrwWk2IqvbUZkYUorWqS76g45HhZH6jlLlKNVPlNnOR_vhG3v8H6rFajn--AL2a3a5</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387537137</pqid></control><display><type>article</type><title>Linking discrete particle simulation to continuum properties of the gas fluidization of cohesive particles</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Wu, Yongli ; Hou, Qinfu ; Yu, Aibing</creator><creatorcontrib>Wu, Yongli ; Hou, Qinfu ; Yu, Aibing</creatorcontrib><description>Discrete particle simulation can explicitly consider interparticle forces and obtain microscopic properties of the fluidized cohesive particles, but it is computationally expensive. It is thus pivotal to link the microscopic discrete properties to the macroscopic continuum description of the system for large scale applications. This work studies the fluidization of cohesive particles through the coupled computational fluid dynamics and discrete element method (CFD‐DEM). First, discrete CFD‐DEM results show the increased particle cohesion leads to the severe particle agglomeration which affects the fluidization quality significantly. Then, continuum properties are attained by a weighted time‐volume averaging method, showing that tensile pressure becomes significant as particle cohesion increases. By incorporating Rumpf correlation into the solid pressure equation, the tensile pressure could be predicted consistently with the averaged CFD‐DEM results for different particle cohesion. Finally, those overall steady averaged properties of the bed are obtained for understanding the general macroscopic properties of the system.</description><identifier>ISSN: 0001-1541</identifier><identifier>EISSN: 1547-5905</identifier><identifier>DOI: 10.1002/aic.16944</identifier><language>eng</language><publisher>Hoboken, USA: John Wiley &amp; Sons, Inc</publisher><subject>agglomeration ; averaging method ; CFD‐DEM ; Cohesion ; cohesive particle ; Computational fluid dynamics ; Computer applications ; Computer simulation ; Discrete element method ; Fluid dynamics ; Fluidization ; Fluidizing ; Hydrodynamics ; Pressure ; Properties (attributes)</subject><ispartof>AIChE journal, 2020-05, Vol.66 (5), p.n/a</ispartof><rights>2020 American Institute of Chemical Engineers</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3344-dff9e5fa814d4697b58c89d429735582bcecaf8299d63659f076caa8163e30713</citedby><cites>FETCH-LOGICAL-c3344-dff9e5fa814d4697b58c89d429735582bcecaf8299d63659f076caa8163e30713</cites><orcidid>0000-0002-0493-9619 ; 0000-0002-9449-5512</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Wu, Yongli</creatorcontrib><creatorcontrib>Hou, Qinfu</creatorcontrib><creatorcontrib>Yu, Aibing</creatorcontrib><title>Linking discrete particle simulation to continuum properties of the gas fluidization of cohesive particles</title><title>AIChE journal</title><description>Discrete particle simulation can explicitly consider interparticle forces and obtain microscopic properties of the fluidized cohesive particles, but it is computationally expensive. It is thus pivotal to link the microscopic discrete properties to the macroscopic continuum description of the system for large scale applications. This work studies the fluidization of cohesive particles through the coupled computational fluid dynamics and discrete element method (CFD‐DEM). First, discrete CFD‐DEM results show the increased particle cohesion leads to the severe particle agglomeration which affects the fluidization quality significantly. Then, continuum properties are attained by a weighted time‐volume averaging method, showing that tensile pressure becomes significant as particle cohesion increases. By incorporating Rumpf correlation into the solid pressure equation, the tensile pressure could be predicted consistently with the averaged CFD‐DEM results for different particle cohesion. Finally, those overall steady averaged properties of the bed are obtained for understanding the general macroscopic properties of the system.</description><subject>agglomeration</subject><subject>averaging method</subject><subject>CFD‐DEM</subject><subject>Cohesion</subject><subject>cohesive particle</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Discrete element method</subject><subject>Fluid dynamics</subject><subject>Fluidization</subject><subject>Fluidizing</subject><subject>Hydrodynamics</subject><subject>Pressure</subject><subject>Properties (attributes)</subject><issn>0001-1541</issn><issn>1547-5905</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp10E1LAzEQBuAgCtbqwX8Q8ORh23xuNsdS_CgUvOg5pNmkTd1u1mRXqb_e6AqePA0ZnswMLwDXGM0wQmSuvZnhUjJ2AiaYM1FwifgpmCCEcJEb-BxcpLTPLyIqMgH7tW9ffbuFtU8m2t7CTsfem8bC5A9Do3sfWtgHaELb-3YYDrCLobPZ2ASDg_3Owq1O0DWDr_3n6HPfhJ1N_v1vXroEZ043yV791il4ub97Xj4W66eH1XKxLgyljBW1c9JypyvMalZKseGVqWTNiBSU84psjDXaVUTKuqQllw6J0ujMS2opEphOwc04Nx_6NtjUq30YYptXKkIrwWk2IqvbUZkYUorWqS76g45HhZH6jlLlKNVPlNnOR_vhG3v8H6rFajn--AL2a3a5</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Wu, Yongli</creator><creator>Hou, Qinfu</creator><creator>Yu, Aibing</creator><general>John Wiley &amp; Sons, Inc</general><general>American Institute of Chemical Engineers</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>7U5</scope><scope>8FD</scope><scope>C1K</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0493-9619</orcidid><orcidid>https://orcid.org/0000-0002-9449-5512</orcidid></search><sort><creationdate>202005</creationdate><title>Linking discrete particle simulation to continuum properties of the gas fluidization of cohesive particles</title><author>Wu, Yongli ; Hou, Qinfu ; Yu, Aibing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3344-dff9e5fa814d4697b58c89d429735582bcecaf8299d63659f076caa8163e30713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>agglomeration</topic><topic>averaging method</topic><topic>CFD‐DEM</topic><topic>Cohesion</topic><topic>cohesive particle</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Discrete element method</topic><topic>Fluid dynamics</topic><topic>Fluidization</topic><topic>Fluidizing</topic><topic>Hydrodynamics</topic><topic>Pressure</topic><topic>Properties (attributes)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yongli</creatorcontrib><creatorcontrib>Hou, Qinfu</creatorcontrib><creatorcontrib>Yu, Aibing</creatorcontrib><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>AIChE journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Yongli</au><au>Hou, Qinfu</au><au>Yu, Aibing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linking discrete particle simulation to continuum properties of the gas fluidization of cohesive particles</atitle><jtitle>AIChE journal</jtitle><date>2020-05</date><risdate>2020</risdate><volume>66</volume><issue>5</issue><epage>n/a</epage><issn>0001-1541</issn><eissn>1547-5905</eissn><abstract>Discrete particle simulation can explicitly consider interparticle forces and obtain microscopic properties of the fluidized cohesive particles, but it is computationally expensive. It is thus pivotal to link the microscopic discrete properties to the macroscopic continuum description of the system for large scale applications. This work studies the fluidization of cohesive particles through the coupled computational fluid dynamics and discrete element method (CFD‐DEM). First, discrete CFD‐DEM results show the increased particle cohesion leads to the severe particle agglomeration which affects the fluidization quality significantly. Then, continuum properties are attained by a weighted time‐volume averaging method, showing that tensile pressure becomes significant as particle cohesion increases. By incorporating Rumpf correlation into the solid pressure equation, the tensile pressure could be predicted consistently with the averaged CFD‐DEM results for different particle cohesion. Finally, those overall steady averaged properties of the bed are obtained for understanding the general macroscopic properties of the system.</abstract><cop>Hoboken, USA</cop><pub>John Wiley &amp; Sons, Inc</pub><doi>10.1002/aic.16944</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-0493-9619</orcidid><orcidid>https://orcid.org/0000-0002-9449-5512</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0001-1541
ispartof AIChE journal, 2020-05, Vol.66 (5), p.n/a
issn 0001-1541
1547-5905
language eng
recordid cdi_proquest_journals_2387537137
source Wiley-Blackwell Read & Publish Collection
subjects agglomeration
averaging method
CFD‐DEM
Cohesion
cohesive particle
Computational fluid dynamics
Computer applications
Computer simulation
Discrete element method
Fluid dynamics
Fluidization
Fluidizing
Hydrodynamics
Pressure
Properties (attributes)
title Linking discrete particle simulation to continuum properties of the gas fluidization of cohesive particles
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T16%3A59%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linking%20discrete%20particle%20simulation%20to%20continuum%20properties%20of%20the%20gas%20fluidization%20of%20cohesive%20particles&rft.jtitle=AIChE%20journal&rft.au=Wu,%20Yongli&rft.date=2020-05&rft.volume=66&rft.issue=5&rft.epage=n/a&rft.issn=0001-1541&rft.eissn=1547-5905&rft_id=info:doi/10.1002/aic.16944&rft_dat=%3Cproquest_cross%3E2387537137%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3344-dff9e5fa814d4697b58c89d429735582bcecaf8299d63659f076caa8163e30713%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2387537137&rft_id=info:pmid/&rfr_iscdi=true