Loading…
Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products
Predicate encryption is a new paradigm for public-key encryption that generalizes identity-based encryption and more. In predicate encryption, secret keys correspond to predicates and ciphertexts are associated with attributes ; the secret key SK f corresponding to a predicate f can be used to decry...
Saved in:
Published in: | Journal of cryptology 2013-04, Vol.26 (2), p.191-224 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c455t-8496dbd04873da071a4d424ca38ea3a272d65a0b1c93dce0f4dbcd45eec157463 |
---|---|
cites | cdi_FETCH-LOGICAL-c455t-8496dbd04873da071a4d424ca38ea3a272d65a0b1c93dce0f4dbcd45eec157463 |
container_end_page | 224 |
container_issue | 2 |
container_start_page | 191 |
container_title | Journal of cryptology |
container_volume | 26 |
creator | Katz, Jonathan Sahai, Amit Waters, Brent |
description | Predicate encryption is a new paradigm for public-key encryption that generalizes identity-based encryption and more. In predicate encryption, secret keys correspond to
predicates
and ciphertexts are associated with
attributes
; the secret key
SK
f
corresponding to a predicate
f
can be used to decrypt a ciphertext associated with attribute
I
if and only if
f
(
I
)=1. Constructions of such schemes are currently known only for certain classes of predicates.
We construct a scheme for predicates corresponding to the evaluation of
inner products
over ℤ
N
(for some large integer
N
). This, in turn, enables constructions in which predicates correspond to the evaluation of disjunctions, polynomials, CNF/DNF formulas, thresholds, and more. Besides serving as a significant step forward in the theory of predicate encryption, our results lead to a number of applications that are interesting in their own right. |
doi_str_mv | 10.1007/s00145-012-9119-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2387712217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387712217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-8496dbd04873da071a4d424ca38ea3a272d65a0b1c93dce0f4dbcd45eec157463</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2AuDOam0czs5RaH1Cw4GMb0iRTprTJNJlZ9N-bMkVXri7c-51zDwehayD3QIh8SIQAF5gAxRVAhfkJGgFnFAOT5SkakYoxTGVFztFFSutMSyHZCH0vorON0Z0rZt7Efds1wRcffduG2DV-VTw1ad17c1inu2IRNnsfto3eFLNdr49b7W3x5r2LxSIG25suXaKzWm-SuzrOMfp6nn1OX_H8_eVt-jjHhgvR4ZJXE7u0hJeSWU0kaG455Uaz0mmmqaR2IjRZgqmYNY7U3C6N5cI5A0LyCRujm8G3jWHXu9Spdeijzy8VZaWUQCnITMFAmRhSiq5WbWy2Ou4VEHWoTw31qVyfOtSneNbcHp11MnpTR-1Nk36FORpnQojM0YFL-eRXLv4l-N_8ByZmgCs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387712217</pqid></control><display><type>article</type><title>Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products</title><source>Springer Nature</source><creator>Katz, Jonathan ; Sahai, Amit ; Waters, Brent</creator><creatorcontrib>Katz, Jonathan ; Sahai, Amit ; Waters, Brent</creatorcontrib><description>Predicate encryption is a new paradigm for public-key encryption that generalizes identity-based encryption and more. In predicate encryption, secret keys correspond to
predicates
and ciphertexts are associated with
attributes
; the secret key
SK
f
corresponding to a predicate
f
can be used to decrypt a ciphertext associated with attribute
I
if and only if
f
(
I
)=1. Constructions of such schemes are currently known only for certain classes of predicates.
We construct a scheme for predicates corresponding to the evaluation of
inner products
over ℤ
N
(for some large integer
N
). This, in turn, enables constructions in which predicates correspond to the evaluation of disjunctions, polynomials, CNF/DNF formulas, thresholds, and more. Besides serving as a significant step forward in the theory of predicate encryption, our results lead to a number of applications that are interesting in their own right.</description><identifier>ISSN: 0933-2790</identifier><identifier>EISSN: 1432-1378</identifier><identifier>DOI: 10.1007/s00145-012-9119-4</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Algorithms ; Applied sciences ; Coding and Information Theory ; Combinatorics ; Communications Engineering ; Computational Mathematics and Numerical Analysis ; Computer Science ; Cryptography ; Encryption ; Exact sciences and technology ; Information, signal and communications theory ; Networks ; Polynomials ; Probability Theory and Stochastic Processes ; Signal and communications theory ; Telecommunications and information theory</subject><ispartof>Journal of cryptology, 2013-04, Vol.26 (2), p.191-224</ispartof><rights>International Association for Cryptologic Research 2012</rights><rights>2014 INIST-CNRS</rights><rights>International Association for Cryptologic Research 2012.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-8496dbd04873da071a4d424ca38ea3a272d65a0b1c93dce0f4dbcd45eec157463</citedby><cites>FETCH-LOGICAL-c455t-8496dbd04873da071a4d424ca38ea3a272d65a0b1c93dce0f4dbcd45eec157463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27243555$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Katz, Jonathan</creatorcontrib><creatorcontrib>Sahai, Amit</creatorcontrib><creatorcontrib>Waters, Brent</creatorcontrib><title>Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products</title><title>Journal of cryptology</title><addtitle>J Cryptol</addtitle><description>Predicate encryption is a new paradigm for public-key encryption that generalizes identity-based encryption and more. In predicate encryption, secret keys correspond to
predicates
and ciphertexts are associated with
attributes
; the secret key
SK
f
corresponding to a predicate
f
can be used to decrypt a ciphertext associated with attribute
I
if and only if
f
(
I
)=1. Constructions of such schemes are currently known only for certain classes of predicates.
We construct a scheme for predicates corresponding to the evaluation of
inner products
over ℤ
N
(for some large integer
N
). This, in turn, enables constructions in which predicates correspond to the evaluation of disjunctions, polynomials, CNF/DNF formulas, thresholds, and more. Besides serving as a significant step forward in the theory of predicate encryption, our results lead to a number of applications that are interesting in their own right.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Coding and Information Theory</subject><subject>Combinatorics</subject><subject>Communications Engineering</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computer Science</subject><subject>Cryptography</subject><subject>Encryption</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Networks</subject><subject>Polynomials</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Signal and communications theory</subject><subject>Telecommunications and information theory</subject><issn>0933-2790</issn><issn>1432-1378</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wN2AuDOam0czs5RaH1Cw4GMb0iRTprTJNJlZ9N-bMkVXri7c-51zDwehayD3QIh8SIQAF5gAxRVAhfkJGgFnFAOT5SkakYoxTGVFztFFSutMSyHZCH0vorON0Z0rZt7Efds1wRcffduG2DV-VTw1ad17c1inu2IRNnsfto3eFLNdr49b7W3x5r2LxSIG25suXaKzWm-SuzrOMfp6nn1OX_H8_eVt-jjHhgvR4ZJXE7u0hJeSWU0kaG455Uaz0mmmqaR2IjRZgqmYNY7U3C6N5cI5A0LyCRujm8G3jWHXu9Spdeijzy8VZaWUQCnITMFAmRhSiq5WbWy2Ou4VEHWoTw31qVyfOtSneNbcHp11MnpTR-1Nk36FORpnQojM0YFL-eRXLv4l-N_8ByZmgCs</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Katz, Jonathan</creator><creator>Sahai, Amit</creator><creator>Waters, Brent</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130401</creationdate><title>Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products</title><author>Katz, Jonathan ; Sahai, Amit ; Waters, Brent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-8496dbd04873da071a4d424ca38ea3a272d65a0b1c93dce0f4dbcd45eec157463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Coding and Information Theory</topic><topic>Combinatorics</topic><topic>Communications Engineering</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computer Science</topic><topic>Cryptography</topic><topic>Encryption</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Networks</topic><topic>Polynomials</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Signal and communications theory</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katz, Jonathan</creatorcontrib><creatorcontrib>Sahai, Amit</creatorcontrib><creatorcontrib>Waters, Brent</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of cryptology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katz, Jonathan</au><au>Sahai, Amit</au><au>Waters, Brent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products</atitle><jtitle>Journal of cryptology</jtitle><stitle>J Cryptol</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>26</volume><issue>2</issue><spage>191</spage><epage>224</epage><pages>191-224</pages><issn>0933-2790</issn><eissn>1432-1378</eissn><abstract>Predicate encryption is a new paradigm for public-key encryption that generalizes identity-based encryption and more. In predicate encryption, secret keys correspond to
predicates
and ciphertexts are associated with
attributes
; the secret key
SK
f
corresponding to a predicate
f
can be used to decrypt a ciphertext associated with attribute
I
if and only if
f
(
I
)=1. Constructions of such schemes are currently known only for certain classes of predicates.
We construct a scheme for predicates corresponding to the evaluation of
inner products
over ℤ
N
(for some large integer
N
). This, in turn, enables constructions in which predicates correspond to the evaluation of disjunctions, polynomials, CNF/DNF formulas, thresholds, and more. Besides serving as a significant step forward in the theory of predicate encryption, our results lead to a number of applications that are interesting in their own right.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><doi>10.1007/s00145-012-9119-4</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0933-2790 |
ispartof | Journal of cryptology, 2013-04, Vol.26 (2), p.191-224 |
issn | 0933-2790 1432-1378 |
language | eng |
recordid | cdi_proquest_journals_2387712217 |
source | Springer Nature |
subjects | Algorithms Applied sciences Coding and Information Theory Combinatorics Communications Engineering Computational Mathematics and Numerical Analysis Computer Science Cryptography Encryption Exact sciences and technology Information, signal and communications theory Networks Polynomials Probability Theory and Stochastic Processes Signal and communications theory Telecommunications and information theory |
title | Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A47%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicate%20Encryption%20Supporting%20Disjunctions,%20Polynomial%20Equations,%20and%20Inner%20Products&rft.jtitle=Journal%20of%20cryptology&rft.au=Katz,%20Jonathan&rft.date=2013-04-01&rft.volume=26&rft.issue=2&rft.spage=191&rft.epage=224&rft.pages=191-224&rft.issn=0933-2790&rft.eissn=1432-1378&rft_id=info:doi/10.1007/s00145-012-9119-4&rft_dat=%3Cproquest_cross%3E2387712217%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-8496dbd04873da071a4d424ca38ea3a272d65a0b1c93dce0f4dbcd45eec157463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2387712217&rft_id=info:pmid/&rfr_iscdi=true |