Loading…

Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products

Predicate encryption is a new paradigm for public-key encryption that generalizes identity-based encryption and more. In predicate encryption, secret keys correspond to predicates and ciphertexts are associated with attributes ; the secret key SK f corresponding to a predicate f can be used to decry...

Full description

Saved in:
Bibliographic Details
Published in:Journal of cryptology 2013-04, Vol.26 (2), p.191-224
Main Authors: Katz, Jonathan, Sahai, Amit, Waters, Brent
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c455t-8496dbd04873da071a4d424ca38ea3a272d65a0b1c93dce0f4dbcd45eec157463
cites cdi_FETCH-LOGICAL-c455t-8496dbd04873da071a4d424ca38ea3a272d65a0b1c93dce0f4dbcd45eec157463
container_end_page 224
container_issue 2
container_start_page 191
container_title Journal of cryptology
container_volume 26
creator Katz, Jonathan
Sahai, Amit
Waters, Brent
description Predicate encryption is a new paradigm for public-key encryption that generalizes identity-based encryption and more. In predicate encryption, secret keys correspond to predicates and ciphertexts are associated with attributes ; the secret key SK f corresponding to a predicate f can be used to decrypt a ciphertext associated with attribute I if and only if f ( I )=1. Constructions of such schemes are currently known only for certain classes of predicates. We construct a scheme for predicates corresponding to the evaluation of inner products over ℤ N (for some large integer  N ). This, in turn, enables constructions in which predicates correspond to the evaluation of disjunctions, polynomials, CNF/DNF formulas, thresholds, and more. Besides serving as a significant step forward in the theory of predicate encryption, our results lead to a number of applications that are interesting in their own right.
doi_str_mv 10.1007/s00145-012-9119-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2387712217</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387712217</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-8496dbd04873da071a4d424ca38ea3a272d65a0b1c93dce0f4dbcd45eec157463</originalsourceid><addsrcrecordid>eNp1kEtLAzEUhYMoWKs_wN2AuDOam0czs5RaH1Cw4GMb0iRTprTJNJlZ9N-bMkVXri7c-51zDwehayD3QIh8SIQAF5gAxRVAhfkJGgFnFAOT5SkakYoxTGVFztFFSutMSyHZCH0vorON0Z0rZt7Efds1wRcffduG2DV-VTw1ad17c1inu2IRNnsfto3eFLNdr49b7W3x5r2LxSIG25suXaKzWm-SuzrOMfp6nn1OX_H8_eVt-jjHhgvR4ZJXE7u0hJeSWU0kaG455Uaz0mmmqaR2IjRZgqmYNY7U3C6N5cI5A0LyCRujm8G3jWHXu9Spdeijzy8VZaWUQCnITMFAmRhSiq5WbWy2Ou4VEHWoTw31qVyfOtSneNbcHp11MnpTR-1Nk36FORpnQojM0YFL-eRXLv4l-N_8ByZmgCs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387712217</pqid></control><display><type>article</type><title>Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products</title><source>Springer Nature</source><creator>Katz, Jonathan ; Sahai, Amit ; Waters, Brent</creator><creatorcontrib>Katz, Jonathan ; Sahai, Amit ; Waters, Brent</creatorcontrib><description>Predicate encryption is a new paradigm for public-key encryption that generalizes identity-based encryption and more. In predicate encryption, secret keys correspond to predicates and ciphertexts are associated with attributes ; the secret key SK f corresponding to a predicate f can be used to decrypt a ciphertext associated with attribute I if and only if f ( I )=1. Constructions of such schemes are currently known only for certain classes of predicates. We construct a scheme for predicates corresponding to the evaluation of inner products over ℤ N (for some large integer  N ). This, in turn, enables constructions in which predicates correspond to the evaluation of disjunctions, polynomials, CNF/DNF formulas, thresholds, and more. Besides serving as a significant step forward in the theory of predicate encryption, our results lead to a number of applications that are interesting in their own right.</description><identifier>ISSN: 0933-2790</identifier><identifier>EISSN: 1432-1378</identifier><identifier>DOI: 10.1007/s00145-012-9119-4</identifier><language>eng</language><publisher>New York: Springer-Verlag</publisher><subject>Algorithms ; Applied sciences ; Coding and Information Theory ; Combinatorics ; Communications Engineering ; Computational Mathematics and Numerical Analysis ; Computer Science ; Cryptography ; Encryption ; Exact sciences and technology ; Information, signal and communications theory ; Networks ; Polynomials ; Probability Theory and Stochastic Processes ; Signal and communications theory ; Telecommunications and information theory</subject><ispartof>Journal of cryptology, 2013-04, Vol.26 (2), p.191-224</ispartof><rights>International Association for Cryptologic Research 2012</rights><rights>2014 INIST-CNRS</rights><rights>International Association for Cryptologic Research 2012.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-8496dbd04873da071a4d424ca38ea3a272d65a0b1c93dce0f4dbcd45eec157463</citedby><cites>FETCH-LOGICAL-c455t-8496dbd04873da071a4d424ca38ea3a272d65a0b1c93dce0f4dbcd45eec157463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27243555$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Katz, Jonathan</creatorcontrib><creatorcontrib>Sahai, Amit</creatorcontrib><creatorcontrib>Waters, Brent</creatorcontrib><title>Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products</title><title>Journal of cryptology</title><addtitle>J Cryptol</addtitle><description>Predicate encryption is a new paradigm for public-key encryption that generalizes identity-based encryption and more. In predicate encryption, secret keys correspond to predicates and ciphertexts are associated with attributes ; the secret key SK f corresponding to a predicate f can be used to decrypt a ciphertext associated with attribute I if and only if f ( I )=1. Constructions of such schemes are currently known only for certain classes of predicates. We construct a scheme for predicates corresponding to the evaluation of inner products over ℤ N (for some large integer  N ). This, in turn, enables constructions in which predicates correspond to the evaluation of disjunctions, polynomials, CNF/DNF formulas, thresholds, and more. Besides serving as a significant step forward in the theory of predicate encryption, our results lead to a number of applications that are interesting in their own right.</description><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Coding and Information Theory</subject><subject>Combinatorics</subject><subject>Communications Engineering</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computer Science</subject><subject>Cryptography</subject><subject>Encryption</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Networks</subject><subject>Polynomials</subject><subject>Probability Theory and Stochastic Processes</subject><subject>Signal and communications theory</subject><subject>Telecommunications and information theory</subject><issn>0933-2790</issn><issn>1432-1378</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp1kEtLAzEUhYMoWKs_wN2AuDOam0czs5RaH1Cw4GMb0iRTprTJNJlZ9N-bMkVXri7c-51zDwehayD3QIh8SIQAF5gAxRVAhfkJGgFnFAOT5SkakYoxTGVFztFFSutMSyHZCH0vorON0Z0rZt7Efds1wRcffduG2DV-VTw1ad17c1inu2IRNnsfto3eFLNdr49b7W3x5r2LxSIG25suXaKzWm-SuzrOMfp6nn1OX_H8_eVt-jjHhgvR4ZJXE7u0hJeSWU0kaG455Uaz0mmmqaR2IjRZgqmYNY7U3C6N5cI5A0LyCRujm8G3jWHXu9Spdeijzy8VZaWUQCnITMFAmRhSiq5WbWy2Ou4VEHWoTw31qVyfOtSneNbcHp11MnpTR-1Nk36FORpnQojM0YFL-eRXLv4l-N_8ByZmgCs</recordid><startdate>20130401</startdate><enddate>20130401</enddate><creator>Katz, Jonathan</creator><creator>Sahai, Amit</creator><creator>Waters, Brent</creator><general>Springer-Verlag</general><general>Springer</general><general>Springer Nature B.V</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20130401</creationdate><title>Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products</title><author>Katz, Jonathan ; Sahai, Amit ; Waters, Brent</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-8496dbd04873da071a4d424ca38ea3a272d65a0b1c93dce0f4dbcd45eec157463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Coding and Information Theory</topic><topic>Combinatorics</topic><topic>Communications Engineering</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computer Science</topic><topic>Cryptography</topic><topic>Encryption</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Networks</topic><topic>Polynomials</topic><topic>Probability Theory and Stochastic Processes</topic><topic>Signal and communications theory</topic><topic>Telecommunications and information theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Katz, Jonathan</creatorcontrib><creatorcontrib>Sahai, Amit</creatorcontrib><creatorcontrib>Waters, Brent</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><jtitle>Journal of cryptology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Katz, Jonathan</au><au>Sahai, Amit</au><au>Waters, Brent</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products</atitle><jtitle>Journal of cryptology</jtitle><stitle>J Cryptol</stitle><date>2013-04-01</date><risdate>2013</risdate><volume>26</volume><issue>2</issue><spage>191</spage><epage>224</epage><pages>191-224</pages><issn>0933-2790</issn><eissn>1432-1378</eissn><abstract>Predicate encryption is a new paradigm for public-key encryption that generalizes identity-based encryption and more. In predicate encryption, secret keys correspond to predicates and ciphertexts are associated with attributes ; the secret key SK f corresponding to a predicate f can be used to decrypt a ciphertext associated with attribute I if and only if f ( I )=1. Constructions of such schemes are currently known only for certain classes of predicates. We construct a scheme for predicates corresponding to the evaluation of inner products over ℤ N (for some large integer  N ). This, in turn, enables constructions in which predicates correspond to the evaluation of disjunctions, polynomials, CNF/DNF formulas, thresholds, and more. Besides serving as a significant step forward in the theory of predicate encryption, our results lead to a number of applications that are interesting in their own right.</abstract><cop>New York</cop><pub>Springer-Verlag</pub><doi>10.1007/s00145-012-9119-4</doi><tpages>34</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0933-2790
ispartof Journal of cryptology, 2013-04, Vol.26 (2), p.191-224
issn 0933-2790
1432-1378
language eng
recordid cdi_proquest_journals_2387712217
source Springer Nature
subjects Algorithms
Applied sciences
Coding and Information Theory
Combinatorics
Communications Engineering
Computational Mathematics and Numerical Analysis
Computer Science
Cryptography
Encryption
Exact sciences and technology
Information, signal and communications theory
Networks
Polynomials
Probability Theory and Stochastic Processes
Signal and communications theory
Telecommunications and information theory
title Predicate Encryption Supporting Disjunctions, Polynomial Equations, and Inner Products
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A47%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicate%20Encryption%20Supporting%20Disjunctions,%20Polynomial%20Equations,%20and%20Inner%20Products&rft.jtitle=Journal%20of%20cryptology&rft.au=Katz,%20Jonathan&rft.date=2013-04-01&rft.volume=26&rft.issue=2&rft.spage=191&rft.epage=224&rft.pages=191-224&rft.issn=0933-2790&rft.eissn=1432-1378&rft_id=info:doi/10.1007/s00145-012-9119-4&rft_dat=%3Cproquest_cross%3E2387712217%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-8496dbd04873da071a4d424ca38ea3a272d65a0b1c93dce0f4dbcd45eec157463%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2387712217&rft_id=info:pmid/&rfr_iscdi=true