Loading…

SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation

The precise segmentation of retinal blood vessels is of great significance for early diagnosis of eye-related diseases such as diabetes and hypertension. In this work, we propose a lightweight network named Spatial Attention U-Net (SA-UNet) that does not require thousands of annotated training sampl...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-10
Main Authors: Guo, Changlu, Szemenyei, Márton, Yi, Yugen, Wang, Wenle, Chen, Buer, Fan, Changqi
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Guo, Changlu
Szemenyei, Márton
Yi, Yugen
Wang, Wenle
Chen, Buer
Fan, Changqi
description The precise segmentation of retinal blood vessels is of great significance for early diagnosis of eye-related diseases such as diabetes and hypertension. In this work, we propose a lightweight network named Spatial Attention U-Net (SA-UNet) that does not require thousands of annotated training samples and can be utilized in a data augmentation manner to use the available annotated samples more efficiently. SA-UNet introduces a spatial attention module which infers the attention map along the spatial dimension, and multiplies the attention map by the input feature map for adaptive feature refinement. In addition, the proposed network employs structured dropout convolutional blocks instead of the original convolutional blocks of U-Net to prevent the network from overfitting. We evaluate SA-UNet based on two benchmark retinal datasets: the Vascular Extraction (DRIVE) dataset and the Child Heart and Health Study (CHASE_DB1) dataset. The results show that the proposed SA-UNet achieves state-of-the-art performance on both datasets.The implementation and the trained networks are available on Github1.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2387880375</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2387880375</sourcerecordid><originalsourceid>FETCH-proquest_journals_23878803753</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwCHbUDfVLLbFSCC5ILMlMzFFwLClJzSvJzM9TCNUFSiik5RcpBKWWZOYB5cJSi4tTcxSCU9NzgWoSQap4GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aRFQc3G8kbGFuYWFgbG5qTFxqgCkpDgl</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387880375</pqid></control><display><type>article</type><title>SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation</title><source>Publicly Available Content Database</source><creator>Guo, Changlu ; Szemenyei, Márton ; Yi, Yugen ; Wang, Wenle ; Chen, Buer ; Fan, Changqi</creator><creatorcontrib>Guo, Changlu ; Szemenyei, Márton ; Yi, Yugen ; Wang, Wenle ; Chen, Buer ; Fan, Changqi</creatorcontrib><description>The precise segmentation of retinal blood vessels is of great significance for early diagnosis of eye-related diseases such as diabetes and hypertension. In this work, we propose a lightweight network named Spatial Attention U-Net (SA-UNet) that does not require thousands of annotated training samples and can be utilized in a data augmentation manner to use the available annotated samples more efficiently. SA-UNet introduces a spatial attention module which infers the attention map along the spatial dimension, and multiplies the attention map by the input feature map for adaptive feature refinement. In addition, the proposed network employs structured dropout convolutional blocks instead of the original convolutional blocks of U-Net to prevent the network from overfitting. We evaluate SA-UNet based on two benchmark retinal datasets: the Vascular Extraction (DRIVE) dataset and the Child Heart and Health Study (CHASE_DB1) dataset. The results show that the proposed SA-UNet achieves state-of-the-art performance on both datasets.The implementation and the trained networks are available on Github1.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Blood vessels ; Datasets ; Feature maps ; Hypertension ; Image segmentation</subject><ispartof>arXiv.org, 2020-10</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2387880375?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Guo, Changlu</creatorcontrib><creatorcontrib>Szemenyei, Márton</creatorcontrib><creatorcontrib>Yi, Yugen</creatorcontrib><creatorcontrib>Wang, Wenle</creatorcontrib><creatorcontrib>Chen, Buer</creatorcontrib><creatorcontrib>Fan, Changqi</creatorcontrib><title>SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation</title><title>arXiv.org</title><description>The precise segmentation of retinal blood vessels is of great significance for early diagnosis of eye-related diseases such as diabetes and hypertension. In this work, we propose a lightweight network named Spatial Attention U-Net (SA-UNet) that does not require thousands of annotated training samples and can be utilized in a data augmentation manner to use the available annotated samples more efficiently. SA-UNet introduces a spatial attention module which infers the attention map along the spatial dimension, and multiplies the attention map by the input feature map for adaptive feature refinement. In addition, the proposed network employs structured dropout convolutional blocks instead of the original convolutional blocks of U-Net to prevent the network from overfitting. We evaluate SA-UNet based on two benchmark retinal datasets: the Vascular Extraction (DRIVE) dataset and the Child Heart and Health Study (CHASE_DB1) dataset. The results show that the proposed SA-UNet achieves state-of-the-art performance on both datasets.The implementation and the trained networks are available on Github1.</description><subject>Blood vessels</subject><subject>Datasets</subject><subject>Feature maps</subject><subject>Hypertension</subject><subject>Image segmentation</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mRwCHbUDfVLLbFSCC5ILMlMzFFwLClJzSvJzM9TCNUFSiik5RcpBKWWZOYB5cJSi4tTcxSCU9NzgWoSQap4GFjTEnOKU3mhNDeDsptriLOHbkFRfmFpanFJfFZ-aRFQc3G8kbGFuYWFgbG5qTFxqgCkpDgl</recordid><startdate>20201020</startdate><enddate>20201020</enddate><creator>Guo, Changlu</creator><creator>Szemenyei, Márton</creator><creator>Yi, Yugen</creator><creator>Wang, Wenle</creator><creator>Chen, Buer</creator><creator>Fan, Changqi</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20201020</creationdate><title>SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation</title><author>Guo, Changlu ; Szemenyei, Márton ; Yi, Yugen ; Wang, Wenle ; Chen, Buer ; Fan, Changqi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23878803753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Blood vessels</topic><topic>Datasets</topic><topic>Feature maps</topic><topic>Hypertension</topic><topic>Image segmentation</topic><toplevel>online_resources</toplevel><creatorcontrib>Guo, Changlu</creatorcontrib><creatorcontrib>Szemenyei, Márton</creatorcontrib><creatorcontrib>Yi, Yugen</creatorcontrib><creatorcontrib>Wang, Wenle</creatorcontrib><creatorcontrib>Chen, Buer</creatorcontrib><creatorcontrib>Fan, Changqi</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Changlu</au><au>Szemenyei, Márton</au><au>Yi, Yugen</au><au>Wang, Wenle</au><au>Chen, Buer</au><au>Fan, Changqi</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation</atitle><jtitle>arXiv.org</jtitle><date>2020-10-20</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>The precise segmentation of retinal blood vessels is of great significance for early diagnosis of eye-related diseases such as diabetes and hypertension. In this work, we propose a lightweight network named Spatial Attention U-Net (SA-UNet) that does not require thousands of annotated training samples and can be utilized in a data augmentation manner to use the available annotated samples more efficiently. SA-UNet introduces a spatial attention module which infers the attention map along the spatial dimension, and multiplies the attention map by the input feature map for adaptive feature refinement. In addition, the proposed network employs structured dropout convolutional blocks instead of the original convolutional blocks of U-Net to prevent the network from overfitting. We evaluate SA-UNet based on two benchmark retinal datasets: the Vascular Extraction (DRIVE) dataset and the Child Heart and Health Study (CHASE_DB1) dataset. The results show that the proposed SA-UNet achieves state-of-the-art performance on both datasets.The implementation and the trained networks are available on Github1.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-10
issn 2331-8422
language eng
recordid cdi_proquest_journals_2387880375
source Publicly Available Content Database
subjects Blood vessels
Datasets
Feature maps
Hypertension
Image segmentation
title SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T14%3A56%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=SA-UNet:%20Spatial%20Attention%20U-Net%20for%20Retinal%20Vessel%20Segmentation&rft.jtitle=arXiv.org&rft.au=Guo,%20Changlu&rft.date=2020-10-20&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2387880375%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_23878803753%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2387880375&rft_id=info:pmid/&rfr_iscdi=true