Loading…
Scaling laws for the geometry of an impact-induced magma ocean
Here, we develop scaling laws for (1) the distribution of impact-induced heat within the mantle and (2) shape of the impact-induced melt based on more than 100 smoothed particle hydrodynamic (SPH) simulations. We use Legendre polynomials to describe these scaling laws and determine their coefficient...
Saved in:
Published in: | arXiv.org 2021-06 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Nakajima, Miki Golabek, Gregor J Wünnemann, Kai Rubie, David C Burger, Christoph Melosh, Henry J Jacobson, Seth A Manske, Lukas Hull, Scott D |
description | Here, we develop scaling laws for (1) the distribution of impact-induced heat within the mantle and (2) shape of the impact-induced melt based on more than 100 smoothed particle hydrodynamic (SPH) simulations. We use Legendre polynomials to describe these scaling laws and determine their coefficients by linear regression, minimizing the error between our model and SPH simulations. The input parameters are the impact angle \(\theta\) (\(0^{\circ}, 30^{\circ}, 60^{\circ}\), and \(90^{\circ}\)), total mass \(M_T\) (\(1M_{\rm Mars}-53M_{\rm Mars}\), where \(M_{\rm Mars}\) is the mass of Mars), impact velocity \(v_{\rm imp}\) (\(v_{\rm esc} - 2v_{\rm esc}\), where \(v_{\rm esc}\) is the mutual escape velocity), and impactor-to-total mass ratio \(\gamma\) (\(0.03-0.5\)). We find that the equilibrium pressure at the base of a melt pool can be higher (up to \(\approx 80 \%\)) than those of radially-uniform global magma ocean models. This could have a significant impact on element partitioning. These melt scaling laws are publicly available on GitHub (\(\href{https://github.com/mikinakajima/MeltScalingLaw}{https://github.com/mikinakajima/MeltScalingLaw}\)). |
doi_str_mv | 10.48550/arxiv.2004.04269 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2388165695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2388165695</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525-391b3dbf30e2be59e4c2e56881ea26a624d40cab81110c917c41893648dcc71b3</originalsourceid><addsrcrecordid>eNotjclqwzAUAEWh0JDmA3oT9GxXelosXQoldINAD809PMvProNtpZbd5e9raE5zmhnGbqTItTNG3OH4037lIITOhQbrL9gKlJKZ0wBXbJPSUQgBtgBj1Irdvwfs2qHhHX4nXseRTx_EG4o9TeMvjzXHgbf9CcOUtUM1B6p4j02PPAbC4Zpd1tgl2py5Zvunx_32Jdu9Pb9uH3YZGjCZ8rJUVVkrQVCS8aQDkLHOSUKwaEFXWgQsnZRSBC-LoKXzympXhVAs7prd_mdPY_ycKU2HY5zHYTkeQC0Za6w36g9MhUkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388165695</pqid></control><display><type>article</type><title>Scaling laws for the geometry of an impact-induced magma ocean</title><source>Publicly Available Content Database</source><creator>Nakajima, Miki ; Golabek, Gregor J ; Wünnemann, Kai ; Rubie, David C ; Burger, Christoph ; Melosh, Henry J ; Jacobson, Seth A ; Manske, Lukas ; Hull, Scott D</creator><creatorcontrib>Nakajima, Miki ; Golabek, Gregor J ; Wünnemann, Kai ; Rubie, David C ; Burger, Christoph ; Melosh, Henry J ; Jacobson, Seth A ; Manske, Lukas ; Hull, Scott D</creatorcontrib><description>Here, we develop scaling laws for (1) the distribution of impact-induced heat within the mantle and (2) shape of the impact-induced melt based on more than 100 smoothed particle hydrodynamic (SPH) simulations. We use Legendre polynomials to describe these scaling laws and determine their coefficients by linear regression, minimizing the error between our model and SPH simulations. The input parameters are the impact angle \(\theta\) (\(0^{\circ}, 30^{\circ}, 60^{\circ}\), and \(90^{\circ}\)), total mass \(M_T\) (\(1M_{\rm Mars}-53M_{\rm Mars}\), where \(M_{\rm Mars}\) is the mass of Mars), impact velocity \(v_{\rm imp}\) (\(v_{\rm esc} - 2v_{\rm esc}\), where \(v_{\rm esc}\) is the mutual escape velocity), and impactor-to-total mass ratio \(\gamma\) (\(0.03-0.5\)). We find that the equilibrium pressure at the base of a melt pool can be higher (up to \(\approx 80 \%\)) than those of radially-uniform global magma ocean models. This could have a significant impact on element partitioning. These melt scaling laws are publicly available on GitHub (\(\href{https://github.com/mikinakajima/MeltScalingLaw}{https://github.com/mikinakajima/MeltScalingLaw}\)).</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2004.04269</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Balancing ; Chemical composition ; Computer simulation ; Deposition ; Heat distribution ; Impact angle ; Impact velocity ; Internal energy ; Kinetic energy ; Magma ; Mantle ; Ocean models ; Parameters ; Polynomials ; Potential energy ; Protoplanets ; Scaling laws</subject><ispartof>arXiv.org, 2021-06</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2388165695?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml></links><search><creatorcontrib>Nakajima, Miki</creatorcontrib><creatorcontrib>Golabek, Gregor J</creatorcontrib><creatorcontrib>Wünnemann, Kai</creatorcontrib><creatorcontrib>Rubie, David C</creatorcontrib><creatorcontrib>Burger, Christoph</creatorcontrib><creatorcontrib>Melosh, Henry J</creatorcontrib><creatorcontrib>Jacobson, Seth A</creatorcontrib><creatorcontrib>Manske, Lukas</creatorcontrib><creatorcontrib>Hull, Scott D</creatorcontrib><title>Scaling laws for the geometry of an impact-induced magma ocean</title><title>arXiv.org</title><description>Here, we develop scaling laws for (1) the distribution of impact-induced heat within the mantle and (2) shape of the impact-induced melt based on more than 100 smoothed particle hydrodynamic (SPH) simulations. We use Legendre polynomials to describe these scaling laws and determine their coefficients by linear regression, minimizing the error between our model and SPH simulations. The input parameters are the impact angle \(\theta\) (\(0^{\circ}, 30^{\circ}, 60^{\circ}\), and \(90^{\circ}\)), total mass \(M_T\) (\(1M_{\rm Mars}-53M_{\rm Mars}\), where \(M_{\rm Mars}\) is the mass of Mars), impact velocity \(v_{\rm imp}\) (\(v_{\rm esc} - 2v_{\rm esc}\), where \(v_{\rm esc}\) is the mutual escape velocity), and impactor-to-total mass ratio \(\gamma\) (\(0.03-0.5\)). We find that the equilibrium pressure at the base of a melt pool can be higher (up to \(\approx 80 \%\)) than those of radially-uniform global magma ocean models. This could have a significant impact on element partitioning. These melt scaling laws are publicly available on GitHub (\(\href{https://github.com/mikinakajima/MeltScalingLaw}{https://github.com/mikinakajima/MeltScalingLaw}\)).</description><subject>Balancing</subject><subject>Chemical composition</subject><subject>Computer simulation</subject><subject>Deposition</subject><subject>Heat distribution</subject><subject>Impact angle</subject><subject>Impact velocity</subject><subject>Internal energy</subject><subject>Kinetic energy</subject><subject>Magma</subject><subject>Mantle</subject><subject>Ocean models</subject><subject>Parameters</subject><subject>Polynomials</subject><subject>Potential energy</subject><subject>Protoplanets</subject><subject>Scaling laws</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjclqwzAUAEWh0JDmA3oT9GxXelosXQoldINAD809PMvProNtpZbd5e9raE5zmhnGbqTItTNG3OH4037lIITOhQbrL9gKlJKZ0wBXbJPSUQgBtgBj1Irdvwfs2qHhHX4nXseRTx_EG4o9TeMvjzXHgbf9CcOUtUM1B6p4j02PPAbC4Zpd1tgl2py5Zvunx_32Jdu9Pb9uH3YZGjCZ8rJUVVkrQVCS8aQDkLHOSUKwaEFXWgQsnZRSBC-LoKXzympXhVAs7prd_mdPY_ycKU2HY5zHYTkeQC0Za6w36g9MhUkg</recordid><startdate>20210602</startdate><enddate>20210602</enddate><creator>Nakajima, Miki</creator><creator>Golabek, Gregor J</creator><creator>Wünnemann, Kai</creator><creator>Rubie, David C</creator><creator>Burger, Christoph</creator><creator>Melosh, Henry J</creator><creator>Jacobson, Seth A</creator><creator>Manske, Lukas</creator><creator>Hull, Scott D</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210602</creationdate><title>Scaling laws for the geometry of an impact-induced magma ocean</title><author>Nakajima, Miki ; Golabek, Gregor J ; Wünnemann, Kai ; Rubie, David C ; Burger, Christoph ; Melosh, Henry J ; Jacobson, Seth A ; Manske, Lukas ; Hull, Scott D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525-391b3dbf30e2be59e4c2e56881ea26a624d40cab81110c917c41893648dcc71b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Balancing</topic><topic>Chemical composition</topic><topic>Computer simulation</topic><topic>Deposition</topic><topic>Heat distribution</topic><topic>Impact angle</topic><topic>Impact velocity</topic><topic>Internal energy</topic><topic>Kinetic energy</topic><topic>Magma</topic><topic>Mantle</topic><topic>Ocean models</topic><topic>Parameters</topic><topic>Polynomials</topic><topic>Potential energy</topic><topic>Protoplanets</topic><topic>Scaling laws</topic><toplevel>online_resources</toplevel><creatorcontrib>Nakajima, Miki</creatorcontrib><creatorcontrib>Golabek, Gregor J</creatorcontrib><creatorcontrib>Wünnemann, Kai</creatorcontrib><creatorcontrib>Rubie, David C</creatorcontrib><creatorcontrib>Burger, Christoph</creatorcontrib><creatorcontrib>Melosh, Henry J</creatorcontrib><creatorcontrib>Jacobson, Seth A</creatorcontrib><creatorcontrib>Manske, Lukas</creatorcontrib><creatorcontrib>Hull, Scott D</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakajima, Miki</au><au>Golabek, Gregor J</au><au>Wünnemann, Kai</au><au>Rubie, David C</au><au>Burger, Christoph</au><au>Melosh, Henry J</au><au>Jacobson, Seth A</au><au>Manske, Lukas</au><au>Hull, Scott D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling laws for the geometry of an impact-induced magma ocean</atitle><jtitle>arXiv.org</jtitle><date>2021-06-02</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Here, we develop scaling laws for (1) the distribution of impact-induced heat within the mantle and (2) shape of the impact-induced melt based on more than 100 smoothed particle hydrodynamic (SPH) simulations. We use Legendre polynomials to describe these scaling laws and determine their coefficients by linear regression, minimizing the error between our model and SPH simulations. The input parameters are the impact angle \(\theta\) (\(0^{\circ}, 30^{\circ}, 60^{\circ}\), and \(90^{\circ}\)), total mass \(M_T\) (\(1M_{\rm Mars}-53M_{\rm Mars}\), where \(M_{\rm Mars}\) is the mass of Mars), impact velocity \(v_{\rm imp}\) (\(v_{\rm esc} - 2v_{\rm esc}\), where \(v_{\rm esc}\) is the mutual escape velocity), and impactor-to-total mass ratio \(\gamma\) (\(0.03-0.5\)). We find that the equilibrium pressure at the base of a melt pool can be higher (up to \(\approx 80 \%\)) than those of radially-uniform global magma ocean models. This could have a significant impact on element partitioning. These melt scaling laws are publicly available on GitHub (\(\href{https://github.com/mikinakajima/MeltScalingLaw}{https://github.com/mikinakajima/MeltScalingLaw}\)).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2004.04269</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2021-06 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2388165695 |
source | Publicly Available Content Database |
subjects | Balancing Chemical composition Computer simulation Deposition Heat distribution Impact angle Impact velocity Internal energy Kinetic energy Magma Mantle Ocean models Parameters Polynomials Potential energy Protoplanets Scaling laws |
title | Scaling laws for the geometry of an impact-induced magma ocean |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-10T00%3A33%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20laws%20for%20the%20geometry%20of%20an%20impact-induced%20magma%20ocean&rft.jtitle=arXiv.org&rft.au=Nakajima,%20Miki&rft.date=2021-06-02&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2004.04269&rft_dat=%3Cproquest%3E2388165695%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a525-391b3dbf30e2be59e4c2e56881ea26a624d40cab81110c917c41893648dcc71b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2388165695&rft_id=info:pmid/&rfr_iscdi=true |