Loading…

Scaling laws for the geometry of an impact-induced magma ocean

Here, we develop scaling laws for (1) the distribution of impact-induced heat within the mantle and (2) shape of the impact-induced melt based on more than 100 smoothed particle hydrodynamic (SPH) simulations. We use Legendre polynomials to describe these scaling laws and determine their coefficient...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2021-06
Main Authors: Nakajima, Miki, Golabek, Gregor J, Wünnemann, Kai, Rubie, David C, Burger, Christoph, Melosh, Henry J, Jacobson, Seth A, Manske, Lukas, Hull, Scott D
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Nakajima, Miki
Golabek, Gregor J
Wünnemann, Kai
Rubie, David C
Burger, Christoph
Melosh, Henry J
Jacobson, Seth A
Manske, Lukas
Hull, Scott D
description Here, we develop scaling laws for (1) the distribution of impact-induced heat within the mantle and (2) shape of the impact-induced melt based on more than 100 smoothed particle hydrodynamic (SPH) simulations. We use Legendre polynomials to describe these scaling laws and determine their coefficients by linear regression, minimizing the error between our model and SPH simulations. The input parameters are the impact angle \(\theta\) (\(0^{\circ}, 30^{\circ}, 60^{\circ}\), and \(90^{\circ}\)), total mass \(M_T\) (\(1M_{\rm Mars}-53M_{\rm Mars}\), where \(M_{\rm Mars}\) is the mass of Mars), impact velocity \(v_{\rm imp}\) (\(v_{\rm esc} - 2v_{\rm esc}\), where \(v_{\rm esc}\) is the mutual escape velocity), and impactor-to-total mass ratio \(\gamma\) (\(0.03-0.5\)). We find that the equilibrium pressure at the base of a melt pool can be higher (up to \(\approx 80 \%\)) than those of radially-uniform global magma ocean models. This could have a significant impact on element partitioning. These melt scaling laws are publicly available on GitHub (\(\href{https://github.com/mikinakajima/MeltScalingLaw}{https://github.com/mikinakajima/MeltScalingLaw}\)).
doi_str_mv 10.48550/arxiv.2004.04269
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2388165695</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2388165695</sourcerecordid><originalsourceid>FETCH-LOGICAL-a525-391b3dbf30e2be59e4c2e56881ea26a624d40cab81110c917c41893648dcc71b3</originalsourceid><addsrcrecordid>eNotjclqwzAUAEWh0JDmA3oT9GxXelosXQoldINAD809PMvProNtpZbd5e9raE5zmhnGbqTItTNG3OH4037lIITOhQbrL9gKlJKZ0wBXbJPSUQgBtgBj1Irdvwfs2qHhHX4nXseRTx_EG4o9TeMvjzXHgbf9CcOUtUM1B6p4j02PPAbC4Zpd1tgl2py5Zvunx_32Jdu9Pb9uH3YZGjCZ8rJUVVkrQVCS8aQDkLHOSUKwaEFXWgQsnZRSBC-LoKXzympXhVAs7prd_mdPY_ycKU2HY5zHYTkeQC0Za6w36g9MhUkg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388165695</pqid></control><display><type>article</type><title>Scaling laws for the geometry of an impact-induced magma ocean</title><source>Publicly Available Content Database</source><creator>Nakajima, Miki ; Golabek, Gregor J ; Wünnemann, Kai ; Rubie, David C ; Burger, Christoph ; Melosh, Henry J ; Jacobson, Seth A ; Manske, Lukas ; Hull, Scott D</creator><creatorcontrib>Nakajima, Miki ; Golabek, Gregor J ; Wünnemann, Kai ; Rubie, David C ; Burger, Christoph ; Melosh, Henry J ; Jacobson, Seth A ; Manske, Lukas ; Hull, Scott D</creatorcontrib><description>Here, we develop scaling laws for (1) the distribution of impact-induced heat within the mantle and (2) shape of the impact-induced melt based on more than 100 smoothed particle hydrodynamic (SPH) simulations. We use Legendre polynomials to describe these scaling laws and determine their coefficients by linear regression, minimizing the error between our model and SPH simulations. The input parameters are the impact angle \(\theta\) (\(0^{\circ}, 30^{\circ}, 60^{\circ}\), and \(90^{\circ}\)), total mass \(M_T\) (\(1M_{\rm Mars}-53M_{\rm Mars}\), where \(M_{\rm Mars}\) is the mass of Mars), impact velocity \(v_{\rm imp}\) (\(v_{\rm esc} - 2v_{\rm esc}\), where \(v_{\rm esc}\) is the mutual escape velocity), and impactor-to-total mass ratio \(\gamma\) (\(0.03-0.5\)). We find that the equilibrium pressure at the base of a melt pool can be higher (up to \(\approx 80 \%\)) than those of radially-uniform global magma ocean models. This could have a significant impact on element partitioning. These melt scaling laws are publicly available on GitHub (\(\href{https://github.com/mikinakajima/MeltScalingLaw}{https://github.com/mikinakajima/MeltScalingLaw}\)).</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2004.04269</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Balancing ; Chemical composition ; Computer simulation ; Deposition ; Heat distribution ; Impact angle ; Impact velocity ; Internal energy ; Kinetic energy ; Magma ; Mantle ; Ocean models ; Parameters ; Polynomials ; Potential energy ; Protoplanets ; Scaling laws</subject><ispartof>arXiv.org, 2021-06</ispartof><rights>2021. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2388165695?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml></links><search><creatorcontrib>Nakajima, Miki</creatorcontrib><creatorcontrib>Golabek, Gregor J</creatorcontrib><creatorcontrib>Wünnemann, Kai</creatorcontrib><creatorcontrib>Rubie, David C</creatorcontrib><creatorcontrib>Burger, Christoph</creatorcontrib><creatorcontrib>Melosh, Henry J</creatorcontrib><creatorcontrib>Jacobson, Seth A</creatorcontrib><creatorcontrib>Manske, Lukas</creatorcontrib><creatorcontrib>Hull, Scott D</creatorcontrib><title>Scaling laws for the geometry of an impact-induced magma ocean</title><title>arXiv.org</title><description>Here, we develop scaling laws for (1) the distribution of impact-induced heat within the mantle and (2) shape of the impact-induced melt based on more than 100 smoothed particle hydrodynamic (SPH) simulations. We use Legendre polynomials to describe these scaling laws and determine their coefficients by linear regression, minimizing the error between our model and SPH simulations. The input parameters are the impact angle \(\theta\) (\(0^{\circ}, 30^{\circ}, 60^{\circ}\), and \(90^{\circ}\)), total mass \(M_T\) (\(1M_{\rm Mars}-53M_{\rm Mars}\), where \(M_{\rm Mars}\) is the mass of Mars), impact velocity \(v_{\rm imp}\) (\(v_{\rm esc} - 2v_{\rm esc}\), where \(v_{\rm esc}\) is the mutual escape velocity), and impactor-to-total mass ratio \(\gamma\) (\(0.03-0.5\)). We find that the equilibrium pressure at the base of a melt pool can be higher (up to \(\approx 80 \%\)) than those of radially-uniform global magma ocean models. This could have a significant impact on element partitioning. These melt scaling laws are publicly available on GitHub (\(\href{https://github.com/mikinakajima/MeltScalingLaw}{https://github.com/mikinakajima/MeltScalingLaw}\)).</description><subject>Balancing</subject><subject>Chemical composition</subject><subject>Computer simulation</subject><subject>Deposition</subject><subject>Heat distribution</subject><subject>Impact angle</subject><subject>Impact velocity</subject><subject>Internal energy</subject><subject>Kinetic energy</subject><subject>Magma</subject><subject>Mantle</subject><subject>Ocean models</subject><subject>Parameters</subject><subject>Polynomials</subject><subject>Potential energy</subject><subject>Protoplanets</subject><subject>Scaling laws</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjclqwzAUAEWh0JDmA3oT9GxXelosXQoldINAD809PMvProNtpZbd5e9raE5zmhnGbqTItTNG3OH4037lIITOhQbrL9gKlJKZ0wBXbJPSUQgBtgBj1Irdvwfs2qHhHX4nXseRTx_EG4o9TeMvjzXHgbf9CcOUtUM1B6p4j02PPAbC4Zpd1tgl2py5Zvunx_32Jdu9Pb9uH3YZGjCZ8rJUVVkrQVCS8aQDkLHOSUKwaEFXWgQsnZRSBC-LoKXzympXhVAs7prd_mdPY_ycKU2HY5zHYTkeQC0Za6w36g9MhUkg</recordid><startdate>20210602</startdate><enddate>20210602</enddate><creator>Nakajima, Miki</creator><creator>Golabek, Gregor J</creator><creator>Wünnemann, Kai</creator><creator>Rubie, David C</creator><creator>Burger, Christoph</creator><creator>Melosh, Henry J</creator><creator>Jacobson, Seth A</creator><creator>Manske, Lukas</creator><creator>Hull, Scott D</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20210602</creationdate><title>Scaling laws for the geometry of an impact-induced magma ocean</title><author>Nakajima, Miki ; Golabek, Gregor J ; Wünnemann, Kai ; Rubie, David C ; Burger, Christoph ; Melosh, Henry J ; Jacobson, Seth A ; Manske, Lukas ; Hull, Scott D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a525-391b3dbf30e2be59e4c2e56881ea26a624d40cab81110c917c41893648dcc71b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Balancing</topic><topic>Chemical composition</topic><topic>Computer simulation</topic><topic>Deposition</topic><topic>Heat distribution</topic><topic>Impact angle</topic><topic>Impact velocity</topic><topic>Internal energy</topic><topic>Kinetic energy</topic><topic>Magma</topic><topic>Mantle</topic><topic>Ocean models</topic><topic>Parameters</topic><topic>Polynomials</topic><topic>Potential energy</topic><topic>Protoplanets</topic><topic>Scaling laws</topic><toplevel>online_resources</toplevel><creatorcontrib>Nakajima, Miki</creatorcontrib><creatorcontrib>Golabek, Gregor J</creatorcontrib><creatorcontrib>Wünnemann, Kai</creatorcontrib><creatorcontrib>Rubie, David C</creatorcontrib><creatorcontrib>Burger, Christoph</creatorcontrib><creatorcontrib>Melosh, Henry J</creatorcontrib><creatorcontrib>Jacobson, Seth A</creatorcontrib><creatorcontrib>Manske, Lukas</creatorcontrib><creatorcontrib>Hull, Scott D</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nakajima, Miki</au><au>Golabek, Gregor J</au><au>Wünnemann, Kai</au><au>Rubie, David C</au><au>Burger, Christoph</au><au>Melosh, Henry J</au><au>Jacobson, Seth A</au><au>Manske, Lukas</au><au>Hull, Scott D</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling laws for the geometry of an impact-induced magma ocean</atitle><jtitle>arXiv.org</jtitle><date>2021-06-02</date><risdate>2021</risdate><eissn>2331-8422</eissn><abstract>Here, we develop scaling laws for (1) the distribution of impact-induced heat within the mantle and (2) shape of the impact-induced melt based on more than 100 smoothed particle hydrodynamic (SPH) simulations. We use Legendre polynomials to describe these scaling laws and determine their coefficients by linear regression, minimizing the error between our model and SPH simulations. The input parameters are the impact angle \(\theta\) (\(0^{\circ}, 30^{\circ}, 60^{\circ}\), and \(90^{\circ}\)), total mass \(M_T\) (\(1M_{\rm Mars}-53M_{\rm Mars}\), where \(M_{\rm Mars}\) is the mass of Mars), impact velocity \(v_{\rm imp}\) (\(v_{\rm esc} - 2v_{\rm esc}\), where \(v_{\rm esc}\) is the mutual escape velocity), and impactor-to-total mass ratio \(\gamma\) (\(0.03-0.5\)). We find that the equilibrium pressure at the base of a melt pool can be higher (up to \(\approx 80 \%\)) than those of radially-uniform global magma ocean models. This could have a significant impact on element partitioning. These melt scaling laws are publicly available on GitHub (\(\href{https://github.com/mikinakajima/MeltScalingLaw}{https://github.com/mikinakajima/MeltScalingLaw}\)).</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2004.04269</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2021-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2388165695
source Publicly Available Content Database
subjects Balancing
Chemical composition
Computer simulation
Deposition
Heat distribution
Impact angle
Impact velocity
Internal energy
Kinetic energy
Magma
Mantle
Ocean models
Parameters
Polynomials
Potential energy
Protoplanets
Scaling laws
title Scaling laws for the geometry of an impact-induced magma ocean
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-10T00%3A33%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20laws%20for%20the%20geometry%20of%20an%20impact-induced%20magma%20ocean&rft.jtitle=arXiv.org&rft.au=Nakajima,%20Miki&rft.date=2021-06-02&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2004.04269&rft_dat=%3Cproquest%3E2388165695%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a525-391b3dbf30e2be59e4c2e56881ea26a624d40cab81110c917c41893648dcc71b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2388165695&rft_id=info:pmid/&rfr_iscdi=true