Loading…
Towards Exploiting Implicit Human Feedback for Improving RDF2vec Embeddings
RDF2vec is a technique for creating vector space embeddings from an RDF knowledge graph, i.e., representing each entity in the graph as a vector. It first creates sequences of nodes by performing random walks on the graph. In a second step, those sequences are processed by the word2vec algorithm for...
Saved in:
Published in: | arXiv.org 2020-04 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Ahmad Al Taweel Paulheim, Heiko |
description | RDF2vec is a technique for creating vector space embeddings from an RDF knowledge graph, i.e., representing each entity in the graph as a vector. It first creates sequences of nodes by performing random walks on the graph. In a second step, those sequences are processed by the word2vec algorithm for creating the actual embeddings. In this paper, we explore the use of external edge weights for guiding the random walks. As edge weights, transition probabilities between pages in Wikipedia are used as a proxy for the human feedback for the importance of an edge. We show that in some scenarios, RDF2vec utilizing those transition probabilities can outperform both RDF2vec based on random walks as well as the usage of graph internal edge weights. |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2388167123</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2388167123</sourcerecordid><originalsourceid>FETCH-proquest_journals_23881671233</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTwDskvTyxKKVZwrSjIyc8sycxLV_DMLcjJTM4sUfAozU3MU3BLTU1JSkzOVkjLLwLJFeWXgVQFubgZlaUmK7jmJqWmpABFinkYWNMSc4pTeaE0N4Oym2uIs4cuUEthaWpxSXxWfmlRHlAq3sjYwsLQzNwQ6DLiVAEA29c8og</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388167123</pqid></control><display><type>article</type><title>Towards Exploiting Implicit Human Feedback for Improving RDF2vec Embeddings</title><source>Access via ProQuest (Open Access)</source><creator>Ahmad Al Taweel ; Paulheim, Heiko</creator><creatorcontrib>Ahmad Al Taweel ; Paulheim, Heiko</creatorcontrib><description>RDF2vec is a technique for creating vector space embeddings from an RDF knowledge graph, i.e., representing each entity in the graph as a vector. It first creates sequences of nodes by performing random walks on the graph. In a second step, those sequences are processed by the word2vec algorithm for creating the actual embeddings. In this paper, we explore the use of external edge weights for guiding the random walks. As edge weights, transition probabilities between pages in Wikipedia are used as a proxy for the human feedback for the importance of an edge. We show that in some scenarios, RDF2vec utilizing those transition probabilities can outperform both RDF2vec based on random walks as well as the usage of graph internal edge weights.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Feedback ; Graphical representations ; Knowledge representation ; Markov analysis ; Random walk ; Transition probabilities</subject><ispartof>arXiv.org, 2020-04</ispartof><rights>2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2388167123?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>780,784,25753,37012,44590</link.rule.ids></links><search><creatorcontrib>Ahmad Al Taweel</creatorcontrib><creatorcontrib>Paulheim, Heiko</creatorcontrib><title>Towards Exploiting Implicit Human Feedback for Improving RDF2vec Embeddings</title><title>arXiv.org</title><description>RDF2vec is a technique for creating vector space embeddings from an RDF knowledge graph, i.e., representing each entity in the graph as a vector. It first creates sequences of nodes by performing random walks on the graph. In a second step, those sequences are processed by the word2vec algorithm for creating the actual embeddings. In this paper, we explore the use of external edge weights for guiding the random walks. As edge weights, transition probabilities between pages in Wikipedia are used as a proxy for the human feedback for the importance of an edge. We show that in some scenarios, RDF2vec utilizing those transition probabilities can outperform both RDF2vec based on random walks as well as the usage of graph internal edge weights.</description><subject>Algorithms</subject><subject>Feedback</subject><subject>Graphical representations</subject><subject>Knowledge representation</subject><subject>Markov analysis</subject><subject>Random walk</subject><subject>Transition probabilities</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mTwDskvTyxKKVZwrSjIyc8sycxLV_DMLcjJTM4sUfAozU3MU3BLTU1JSkzOVkjLLwLJFeWXgVQFubgZlaUmK7jmJqWmpABFinkYWNMSc4pTeaE0N4Oym2uIs4cuUEthaWpxSXxWfmlRHlAq3sjYwsLQzNwQ6DLiVAEA29c8og</recordid><startdate>20200409</startdate><enddate>20200409</enddate><creator>Ahmad Al Taweel</creator><creator>Paulheim, Heiko</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200409</creationdate><title>Towards Exploiting Implicit Human Feedback for Improving RDF2vec Embeddings</title><author>Ahmad Al Taweel ; Paulheim, Heiko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23881671233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Feedback</topic><topic>Graphical representations</topic><topic>Knowledge representation</topic><topic>Markov analysis</topic><topic>Random walk</topic><topic>Transition probabilities</topic><toplevel>online_resources</toplevel><creatorcontrib>Ahmad Al Taweel</creatorcontrib><creatorcontrib>Paulheim, Heiko</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmad Al Taweel</au><au>Paulheim, Heiko</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Towards Exploiting Implicit Human Feedback for Improving RDF2vec Embeddings</atitle><jtitle>arXiv.org</jtitle><date>2020-04-09</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>RDF2vec is a technique for creating vector space embeddings from an RDF knowledge graph, i.e., representing each entity in the graph as a vector. It first creates sequences of nodes by performing random walks on the graph. In a second step, those sequences are processed by the word2vec algorithm for creating the actual embeddings. In this paper, we explore the use of external edge weights for guiding the random walks. As edge weights, transition probabilities between pages in Wikipedia are used as a proxy for the human feedback for the importance of an edge. We show that in some scenarios, RDF2vec utilizing those transition probabilities can outperform both RDF2vec based on random walks as well as the usage of graph internal edge weights.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2388167123 |
source | Access via ProQuest (Open Access) |
subjects | Algorithms Feedback Graphical representations Knowledge representation Markov analysis Random walk Transition probabilities |
title | Towards Exploiting Implicit Human Feedback for Improving RDF2vec Embeddings |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A27%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Towards%20Exploiting%20Implicit%20Human%20Feedback%20for%20Improving%20RDF2vec%20Embeddings&rft.jtitle=arXiv.org&rft.au=Ahmad%20Al%20Taweel&rft.date=2020-04-09&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2388167123%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_23881671233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2388167123&rft_id=info:pmid/&rfr_iscdi=true |