Loading…
Improved dynamic cutting force modelling in micro milling of metal matrix composites part II: Experimental validation and prediction
The effects of cutting dynamics and the particles' size and density cannot be ignored in micro milling of metal matrix composites. This article presents the improved dynamic cutting force modelling for micro milling of metal matrix composites based on the previous analytical model. This compreh...
Saved in:
Published in: | Proceedings of the Institution of Mechanical Engineers. Part C, Journal of mechanical engineering science Journal of mechanical engineering science, 2020-04, Vol.234 (8), p.1500-1515 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The effects of cutting dynamics and the particles' size and density cannot be ignored in micro milling of metal matrix composites. This article presents the improved dynamic cutting force modelling for micro milling of metal matrix composites based on the previous analytical model. This comprehensive improved cutting force model, taking the influence of the tool run-out, actual chip thickness and resultant tool tip trajectory into account, is evaluated and validated through well-designed machining trials. A series of side milling experiments using straight flutes polycrystalline diamond end mills are carried out on the metal matrix composite workpiece under various cutting conditions. Subsequently, the measured cutting forces are compensated by a Kalman filter to achieve the accurate cutting forces. These are further compared with the predicted cutting forces to validate the proposed dynamic cutting force model. The experimental results indicate that the predicted and measured cutting forces in micro milling of metal matrix composites are in good agreement. |
---|---|
ISSN: | 0954-4062 2041-2983 |
DOI: | 10.1177/0954406219893725 |