Loading…

Theta operator on Hermitian modular forms over the Eisenstein field

The mod p kernel of the theta operator on Hermitian modular forms is studied in the case that the base field is the Eisenstein field.

Saved in:
Bibliographic Details
Published in:The Ramanujan journal 2020-05, Vol.52 (1), p.105-121
Main Authors: Nagaoka, Shoyu, Takemori, Sho
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-24c0223f8fb50dacee24fed619c601d6aebc3a614bc97abe3481b12ae05cd1263
cites cdi_FETCH-LOGICAL-c382t-24c0223f8fb50dacee24fed619c601d6aebc3a614bc97abe3481b12ae05cd1263
container_end_page 121
container_issue 1
container_start_page 105
container_title The Ramanujan journal
container_volume 52
creator Nagaoka, Shoyu
Takemori, Sho
description The mod p kernel of the theta operator on Hermitian modular forms is studied in the case that the base field is the Eisenstein field.
doi_str_mv 10.1007/s11139-018-0111-y
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2388318910</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2388318910</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-24c0223f8fb50dacee24fed619c601d6aebc3a614bc97abe3481b12ae05cd1263</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4MoOKd_gLeA5-p7SdemRxnTCQMv8xzS9MV1rM1MWmH_vRkVPHl4fN_h-wM-jN0jPCJA-RQRUVYZoEqHmJ0u2AwXpcgqCfIy_VKJLIcKrtlNjHsAyEGWM7bc7mgw3B8pmMEH7nu-ptC1Q2t63vlmPJjAnQ9d5P6bAh92xFdtpD4O1PbctXRobtmVM4dId786Zx8vq-1ynW3eX9-Wz5vMpvEhE7kFIaRTrl5AYyyRyB01BVa2AGwKQ7WVpsC8tlVpapK5whqFIVjYBkUh5-xh6j0G_zVSHPTej6FPk1pIpSSqCiG5cHLZ4GMM5PQxtJ0JJ42gz6z0xEonVvrMSp9SRkyZmLz9J4W_5v9DPw9vbOU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388318910</pqid></control><display><type>article</type><title>Theta operator on Hermitian modular forms over the Eisenstein field</title><source>Springer Nature</source><creator>Nagaoka, Shoyu ; Takemori, Sho</creator><creatorcontrib>Nagaoka, Shoyu ; Takemori, Sho</creatorcontrib><description>The mod p kernel of the theta operator on Hermitian modular forms is studied in the case that the base field is the Eisenstein field.</description><identifier>ISSN: 1382-4090</identifier><identifier>EISSN: 1572-9303</identifier><identifier>DOI: 10.1007/s11139-018-0111-y</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analytic functions ; Combinatorics ; Field Theory and Polynomials ; Fourier Analysis ; Functions of a Complex Variable ; Mathematics ; Mathematics and Statistics ; Number Theory</subject><ispartof>The Ramanujan journal, 2020-05, Vol.52 (1), p.105-121</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-24c0223f8fb50dacee24fed619c601d6aebc3a614bc97abe3481b12ae05cd1263</citedby><cites>FETCH-LOGICAL-c382t-24c0223f8fb50dacee24fed619c601d6aebc3a614bc97abe3481b12ae05cd1263</cites><orcidid>0000-0002-4832-3285</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Nagaoka, Shoyu</creatorcontrib><creatorcontrib>Takemori, Sho</creatorcontrib><title>Theta operator on Hermitian modular forms over the Eisenstein field</title><title>The Ramanujan journal</title><addtitle>Ramanujan J</addtitle><description>The mod p kernel of the theta operator on Hermitian modular forms is studied in the case that the base field is the Eisenstein field.</description><subject>Analytic functions</subject><subject>Combinatorics</subject><subject>Field Theory and Polynomials</subject><subject>Fourier Analysis</subject><subject>Functions of a Complex Variable</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Number Theory</subject><issn>1382-4090</issn><issn>1572-9303</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kM9LwzAUx4MoOKd_gLeA5-p7SdemRxnTCQMv8xzS9MV1rM1MWmH_vRkVPHl4fN_h-wM-jN0jPCJA-RQRUVYZoEqHmJ0u2AwXpcgqCfIy_VKJLIcKrtlNjHsAyEGWM7bc7mgw3B8pmMEH7nu-ptC1Q2t63vlmPJjAnQ9d5P6bAh92xFdtpD4O1PbctXRobtmVM4dId786Zx8vq-1ynW3eX9-Wz5vMpvEhE7kFIaRTrl5AYyyRyB01BVa2AGwKQ7WVpsC8tlVpapK5whqFIVjYBkUh5-xh6j0G_zVSHPTej6FPk1pIpSSqCiG5cHLZ4GMM5PQxtJ0JJ42gz6z0xEonVvrMSp9SRkyZmLz9J4W_5v9DPw9vbOU</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Nagaoka, Shoyu</creator><creator>Takemori, Sho</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-4832-3285</orcidid></search><sort><creationdate>20200501</creationdate><title>Theta operator on Hermitian modular forms over the Eisenstein field</title><author>Nagaoka, Shoyu ; Takemori, Sho</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-24c0223f8fb50dacee24fed619c601d6aebc3a614bc97abe3481b12ae05cd1263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytic functions</topic><topic>Combinatorics</topic><topic>Field Theory and Polynomials</topic><topic>Fourier Analysis</topic><topic>Functions of a Complex Variable</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Number Theory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagaoka, Shoyu</creatorcontrib><creatorcontrib>Takemori, Sho</creatorcontrib><collection>CrossRef</collection><jtitle>The Ramanujan journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagaoka, Shoyu</au><au>Takemori, Sho</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Theta operator on Hermitian modular forms over the Eisenstein field</atitle><jtitle>The Ramanujan journal</jtitle><stitle>Ramanujan J</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>52</volume><issue>1</issue><spage>105</spage><epage>121</epage><pages>105-121</pages><issn>1382-4090</issn><eissn>1572-9303</eissn><abstract>The mod p kernel of the theta operator on Hermitian modular forms is studied in the case that the base field is the Eisenstein field.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11139-018-0111-y</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-4832-3285</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1382-4090
ispartof The Ramanujan journal, 2020-05, Vol.52 (1), p.105-121
issn 1382-4090
1572-9303
language eng
recordid cdi_proquest_journals_2388318910
source Springer Nature
subjects Analytic functions
Combinatorics
Field Theory and Polynomials
Fourier Analysis
Functions of a Complex Variable
Mathematics
Mathematics and Statistics
Number Theory
title Theta operator on Hermitian modular forms over the Eisenstein field
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T02%3A01%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Theta%20operator%20on%20Hermitian%20modular%20forms%20over%20the%20Eisenstein%20field&rft.jtitle=The%20Ramanujan%20journal&rft.au=Nagaoka,%20Shoyu&rft.date=2020-05-01&rft.volume=52&rft.issue=1&rft.spage=105&rft.epage=121&rft.pages=105-121&rft.issn=1382-4090&rft.eissn=1572-9303&rft_id=info:doi/10.1007/s11139-018-0111-y&rft_dat=%3Cproquest_cross%3E2388318910%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-24c0223f8fb50dacee24fed619c601d6aebc3a614bc97abe3481b12ae05cd1263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2388318910&rft_id=info:pmid/&rfr_iscdi=true