Loading…
VIBRATION-BASED STRUCTURAL DAMAGE IDENTIFICATION: A REVIEW
Damage detection for structures remains a challenge problem that has attracted much attention. This study presents a review of vibration-based damage detection in structures. Dynamic- parameter-based techniques, probability-based techniques and intelligent-based techniques have been reviewed. Advant...
Saved in:
Published in: | International journal of robotics & automation 2020-01, Vol.35 (2) |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c269t-70d6d550ee78f66c403f7db811d8d4345075fdc1aa567b895e3c21ef0f3e14c83 |
---|---|
cites | |
container_end_page | |
container_issue | 2 |
container_start_page | |
container_title | International journal of robotics & automation |
container_volume | 35 |
creator | Yang, Jian-Yu Xia, Bin-Hua Chen, Zengshun Li, Tian-Long Liu, Renming |
description | Damage detection for structures remains a challenge problem that has attracted much attention. This study presents a review of vibration-based damage detection in structures. Dynamic- parameter-based techniques, probability-based techniques and intelligent-based techniques have been reviewed. Advantages and disadvantages of these techniques were summarized. Deep learning techniques using convolutional neural network have been introduced. Future trends of damage detection in structures are concluded. |
doi_str_mv | 10.2316/J.2020.206-0259 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2388895452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2388895452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-70d6d550ee78f66c403f7db811d8d4345075fdc1aa567b895e3c21ef0f3e14c83</originalsourceid><addsrcrecordid>eNotjs1PwjAYxhujiRM9e13iufj27dp13MpWsGZCMjY8krG2B2JEGfz_NurpeQ6_54OQRwZT5Ew-v04RMHqQFFAUVyRhBQqaQwHXJAGFkiqmxC25G8cDAErBVUJmWztvdGvXKzrXG1Olm7bpyrZrdJ1W-k0vTWors2rtwpa_2CzVaWO21rzfk5vQf4z-4V8npFuYtnyh9XoZ4ZoOKItzPOCkEwK8z1WQcsiAh9ztFWNOuYxnAnIR3MD6Xsh8rwrh-YDMBwjcs2xQfEKe_nq_Tsfvix_Pu8PxcvqMkzvkSsVEJpD_AJ6AQss</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388895452</pqid></control><display><type>article</type><title>VIBRATION-BASED STRUCTURAL DAMAGE IDENTIFICATION: A REVIEW</title><source>Alma/SFX Local Collection</source><creator>Yang, Jian-Yu ; Xia, Bin-Hua ; Chen, Zengshun ; Li, Tian-Long ; Liu, Renming</creator><creatorcontrib>Yang, Jian-Yu ; Xia, Bin-Hua ; Chen, Zengshun ; Li, Tian-Long ; Liu, Renming</creatorcontrib><description>Damage detection for structures remains a challenge problem that has attracted much attention. This study presents a review of vibration-based damage detection in structures. Dynamic- parameter-based techniques, probability-based techniques and intelligent-based techniques have been reviewed. Advantages and disadvantages of these techniques were summarized. Deep learning techniques using convolutional neural network have been introduced. Future trends of damage detection in structures are concluded.</description><identifier>ISSN: 0826-8185</identifier><identifier>EISSN: 1925-7090</identifier><identifier>DOI: 10.2316/J.2020.206-0259</identifier><language>eng</language><publisher>Calgary: ACTA Press</publisher><subject>Artificial intelligence ; Artificial neural networks ; Damage detection ; Machine learning ; Structural damage ; Vibration</subject><ispartof>International journal of robotics & automation, 2020-01, Vol.35 (2)</ispartof><rights>Copyright ACTA Press 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c269t-70d6d550ee78f66c403f7db811d8d4345075fdc1aa567b895e3c21ef0f3e14c83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Yang, Jian-Yu</creatorcontrib><creatorcontrib>Xia, Bin-Hua</creatorcontrib><creatorcontrib>Chen, Zengshun</creatorcontrib><creatorcontrib>Li, Tian-Long</creatorcontrib><creatorcontrib>Liu, Renming</creatorcontrib><title>VIBRATION-BASED STRUCTURAL DAMAGE IDENTIFICATION: A REVIEW</title><title>International journal of robotics & automation</title><description>Damage detection for structures remains a challenge problem that has attracted much attention. This study presents a review of vibration-based damage detection in structures. Dynamic- parameter-based techniques, probability-based techniques and intelligent-based techniques have been reviewed. Advantages and disadvantages of these techniques were summarized. Deep learning techniques using convolutional neural network have been introduced. Future trends of damage detection in structures are concluded.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Damage detection</subject><subject>Machine learning</subject><subject>Structural damage</subject><subject>Vibration</subject><issn>0826-8185</issn><issn>1925-7090</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotjs1PwjAYxhujiRM9e13iufj27dp13MpWsGZCMjY8krG2B2JEGfz_NurpeQ6_54OQRwZT5Ew-v04RMHqQFFAUVyRhBQqaQwHXJAGFkiqmxC25G8cDAErBVUJmWztvdGvXKzrXG1Olm7bpyrZrdJ1W-k0vTWors2rtwpa_2CzVaWO21rzfk5vQf4z-4V8npFuYtnyh9XoZ4ZoOKItzPOCkEwK8z1WQcsiAh9ztFWNOuYxnAnIR3MD6Xsh8rwrh-YDMBwjcs2xQfEKe_nq_Tsfvix_Pu8PxcvqMkzvkSsVEJpD_AJ6AQss</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Yang, Jian-Yu</creator><creator>Xia, Bin-Hua</creator><creator>Chen, Zengshun</creator><creator>Li, Tian-Long</creator><creator>Liu, Renming</creator><general>ACTA Press</general><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200101</creationdate><title>VIBRATION-BASED STRUCTURAL DAMAGE IDENTIFICATION: A REVIEW</title><author>Yang, Jian-Yu ; Xia, Bin-Hua ; Chen, Zengshun ; Li, Tian-Long ; Liu, Renming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-70d6d550ee78f66c403f7db811d8d4345075fdc1aa567b895e3c21ef0f3e14c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Damage detection</topic><topic>Machine learning</topic><topic>Structural damage</topic><topic>Vibration</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jian-Yu</creatorcontrib><creatorcontrib>Xia, Bin-Hua</creatorcontrib><creatorcontrib>Chen, Zengshun</creatorcontrib><creatorcontrib>Li, Tian-Long</creatorcontrib><creatorcontrib>Liu, Renming</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robotics & automation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jian-Yu</au><au>Xia, Bin-Hua</au><au>Chen, Zengshun</au><au>Li, Tian-Long</au><au>Liu, Renming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VIBRATION-BASED STRUCTURAL DAMAGE IDENTIFICATION: A REVIEW</atitle><jtitle>International journal of robotics & automation</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>35</volume><issue>2</issue><issn>0826-8185</issn><eissn>1925-7090</eissn><abstract>Damage detection for structures remains a challenge problem that has attracted much attention. This study presents a review of vibration-based damage detection in structures. Dynamic- parameter-based techniques, probability-based techniques and intelligent-based techniques have been reviewed. Advantages and disadvantages of these techniques were summarized. Deep learning techniques using convolutional neural network have been introduced. Future trends of damage detection in structures are concluded.</abstract><cop>Calgary</cop><pub>ACTA Press</pub><doi>10.2316/J.2020.206-0259</doi></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0826-8185 |
ispartof | International journal of robotics & automation, 2020-01, Vol.35 (2) |
issn | 0826-8185 1925-7090 |
language | eng |
recordid | cdi_proquest_journals_2388895452 |
source | Alma/SFX Local Collection |
subjects | Artificial intelligence Artificial neural networks Damage detection Machine learning Structural damage Vibration |
title | VIBRATION-BASED STRUCTURAL DAMAGE IDENTIFICATION: A REVIEW |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A46%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VIBRATION-BASED%20STRUCTURAL%20DAMAGE%20IDENTIFICATION:%20A%20REVIEW&rft.jtitle=International%20journal%20of%20robotics%20&%20automation&rft.au=Yang,%20Jian-Yu&rft.date=2020-01-01&rft.volume=35&rft.issue=2&rft.issn=0826-8185&rft.eissn=1925-7090&rft_id=info:doi/10.2316/J.2020.206-0259&rft_dat=%3Cproquest%3E2388895452%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c269t-70d6d550ee78f66c403f7db811d8d4345075fdc1aa567b895e3c21ef0f3e14c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2388895452&rft_id=info:pmid/&rfr_iscdi=true |