Loading…

VIBRATION-BASED STRUCTURAL DAMAGE IDENTIFICATION: A REVIEW

Damage detection for structures remains a challenge problem that has attracted much attention. This study presents a review of vibration-based damage detection in structures. Dynamic- parameter-based techniques, probability-based techniques and intelligent-based techniques have been reviewed. Advant...

Full description

Saved in:
Bibliographic Details
Published in:International journal of robotics & automation 2020-01, Vol.35 (2)
Main Authors: Yang, Jian-Yu, Xia, Bin-Hua, Chen, Zengshun, Li, Tian-Long, Liu, Renming
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c269t-70d6d550ee78f66c403f7db811d8d4345075fdc1aa567b895e3c21ef0f3e14c83
cites
container_end_page
container_issue 2
container_start_page
container_title International journal of robotics & automation
container_volume 35
creator Yang, Jian-Yu
Xia, Bin-Hua
Chen, Zengshun
Li, Tian-Long
Liu, Renming
description Damage detection for structures remains a challenge problem that has attracted much attention. This study presents a review of vibration-based damage detection in structures. Dynamic- parameter-based techniques, probability-based techniques and intelligent-based techniques have been reviewed. Advantages and disadvantages of these techniques were summarized. Deep learning techniques using convolutional neural network have been introduced. Future trends of damage detection in structures are concluded.
doi_str_mv 10.2316/J.2020.206-0259
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2388895452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2388895452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c269t-70d6d550ee78f66c403f7db811d8d4345075fdc1aa567b895e3c21ef0f3e14c83</originalsourceid><addsrcrecordid>eNotjs1PwjAYxhujiRM9e13iufj27dp13MpWsGZCMjY8krG2B2JEGfz_NurpeQ6_54OQRwZT5Ew-v04RMHqQFFAUVyRhBQqaQwHXJAGFkiqmxC25G8cDAErBVUJmWztvdGvXKzrXG1Olm7bpyrZrdJ1W-k0vTWors2rtwpa_2CzVaWO21rzfk5vQf4z-4V8npFuYtnyh9XoZ4ZoOKItzPOCkEwK8z1WQcsiAh9ztFWNOuYxnAnIR3MD6Xsh8rwrh-YDMBwjcs2xQfEKe_nq_Tsfvix_Pu8PxcvqMkzvkSsVEJpD_AJ6AQss</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2388895452</pqid></control><display><type>article</type><title>VIBRATION-BASED STRUCTURAL DAMAGE IDENTIFICATION: A REVIEW</title><source>Alma/SFX Local Collection</source><creator>Yang, Jian-Yu ; Xia, Bin-Hua ; Chen, Zengshun ; Li, Tian-Long ; Liu, Renming</creator><creatorcontrib>Yang, Jian-Yu ; Xia, Bin-Hua ; Chen, Zengshun ; Li, Tian-Long ; Liu, Renming</creatorcontrib><description>Damage detection for structures remains a challenge problem that has attracted much attention. This study presents a review of vibration-based damage detection in structures. Dynamic- parameter-based techniques, probability-based techniques and intelligent-based techniques have been reviewed. Advantages and disadvantages of these techniques were summarized. Deep learning techniques using convolutional neural network have been introduced. Future trends of damage detection in structures are concluded.</description><identifier>ISSN: 0826-8185</identifier><identifier>EISSN: 1925-7090</identifier><identifier>DOI: 10.2316/J.2020.206-0259</identifier><language>eng</language><publisher>Calgary: ACTA Press</publisher><subject>Artificial intelligence ; Artificial neural networks ; Damage detection ; Machine learning ; Structural damage ; Vibration</subject><ispartof>International journal of robotics &amp; automation, 2020-01, Vol.35 (2)</ispartof><rights>Copyright ACTA Press 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c269t-70d6d550ee78f66c403f7db811d8d4345075fdc1aa567b895e3c21ef0f3e14c83</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids></links><search><creatorcontrib>Yang, Jian-Yu</creatorcontrib><creatorcontrib>Xia, Bin-Hua</creatorcontrib><creatorcontrib>Chen, Zengshun</creatorcontrib><creatorcontrib>Li, Tian-Long</creatorcontrib><creatorcontrib>Liu, Renming</creatorcontrib><title>VIBRATION-BASED STRUCTURAL DAMAGE IDENTIFICATION: A REVIEW</title><title>International journal of robotics &amp; automation</title><description>Damage detection for structures remains a challenge problem that has attracted much attention. This study presents a review of vibration-based damage detection in structures. Dynamic- parameter-based techniques, probability-based techniques and intelligent-based techniques have been reviewed. Advantages and disadvantages of these techniques were summarized. Deep learning techniques using convolutional neural network have been introduced. Future trends of damage detection in structures are concluded.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Damage detection</subject><subject>Machine learning</subject><subject>Structural damage</subject><subject>Vibration</subject><issn>0826-8185</issn><issn>1925-7090</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotjs1PwjAYxhujiRM9e13iufj27dp13MpWsGZCMjY8krG2B2JEGfz_NurpeQ6_54OQRwZT5Ew-v04RMHqQFFAUVyRhBQqaQwHXJAGFkiqmxC25G8cDAErBVUJmWztvdGvXKzrXG1Olm7bpyrZrdJ1W-k0vTWors2rtwpa_2CzVaWO21rzfk5vQf4z-4V8npFuYtnyh9XoZ4ZoOKItzPOCkEwK8z1WQcsiAh9ztFWNOuYxnAnIR3MD6Xsh8rwrh-YDMBwjcs2xQfEKe_nq_Tsfvix_Pu8PxcvqMkzvkSsVEJpD_AJ6AQss</recordid><startdate>20200101</startdate><enddate>20200101</enddate><creator>Yang, Jian-Yu</creator><creator>Xia, Bin-Hua</creator><creator>Chen, Zengshun</creator><creator>Li, Tian-Long</creator><creator>Liu, Renming</creator><general>ACTA Press</general><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20200101</creationdate><title>VIBRATION-BASED STRUCTURAL DAMAGE IDENTIFICATION: A REVIEW</title><author>Yang, Jian-Yu ; Xia, Bin-Hua ; Chen, Zengshun ; Li, Tian-Long ; Liu, Renming</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c269t-70d6d550ee78f66c403f7db811d8d4345075fdc1aa567b895e3c21ef0f3e14c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Damage detection</topic><topic>Machine learning</topic><topic>Structural damage</topic><topic>Vibration</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Jian-Yu</creatorcontrib><creatorcontrib>Xia, Bin-Hua</creatorcontrib><creatorcontrib>Chen, Zengshun</creatorcontrib><creatorcontrib>Li, Tian-Long</creatorcontrib><creatorcontrib>Liu, Renming</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robotics &amp; automation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Jian-Yu</au><au>Xia, Bin-Hua</au><au>Chen, Zengshun</au><au>Li, Tian-Long</au><au>Liu, Renming</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>VIBRATION-BASED STRUCTURAL DAMAGE IDENTIFICATION: A REVIEW</atitle><jtitle>International journal of robotics &amp; automation</jtitle><date>2020-01-01</date><risdate>2020</risdate><volume>35</volume><issue>2</issue><issn>0826-8185</issn><eissn>1925-7090</eissn><abstract>Damage detection for structures remains a challenge problem that has attracted much attention. This study presents a review of vibration-based damage detection in structures. Dynamic- parameter-based techniques, probability-based techniques and intelligent-based techniques have been reviewed. Advantages and disadvantages of these techniques were summarized. Deep learning techniques using convolutional neural network have been introduced. Future trends of damage detection in structures are concluded.</abstract><cop>Calgary</cop><pub>ACTA Press</pub><doi>10.2316/J.2020.206-0259</doi></addata></record>
fulltext fulltext
identifier ISSN: 0826-8185
ispartof International journal of robotics & automation, 2020-01, Vol.35 (2)
issn 0826-8185
1925-7090
language eng
recordid cdi_proquest_journals_2388895452
source Alma/SFX Local Collection
subjects Artificial intelligence
Artificial neural networks
Damage detection
Machine learning
Structural damage
Vibration
title VIBRATION-BASED STRUCTURAL DAMAGE IDENTIFICATION: A REVIEW
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A46%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=VIBRATION-BASED%20STRUCTURAL%20DAMAGE%20IDENTIFICATION:%20A%20REVIEW&rft.jtitle=International%20journal%20of%20robotics%20&%20automation&rft.au=Yang,%20Jian-Yu&rft.date=2020-01-01&rft.volume=35&rft.issue=2&rft.issn=0826-8185&rft.eissn=1925-7090&rft_id=info:doi/10.2316/J.2020.206-0259&rft_dat=%3Cproquest%3E2388895452%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c269t-70d6d550ee78f66c403f7db811d8d4345075fdc1aa567b895e3c21ef0f3e14c83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2388895452&rft_id=info:pmid/&rfr_iscdi=true