Loading…

Topological Phase Transition and Phase Diagrams in a Two‐Leg Kitaev Ladder System

A scheme to investigate the topological properties in a two‐leg Kitaev ladder system composed of two Kitaev chains is proposed. In the case of two identical Kitaev chains, it is found that the interchain hopping amplitude plays a significant role in the separation of the energy spectrum and in induc...

Full description

Saved in:
Bibliographic Details
Published in:Annalen der Physik 2020-04, Vol.532 (4), p.n/a
Main Authors: Yan, Yu, Qi, Lu, Wang, Dong‐Yang, Xing, Yan, Wang, Hong‐Fu, Zhang, Shou
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3179-4c83ff7ee56d2a80458fb3a9b3d6f7c97a157bc514becb78f9e01e31c64c35053
cites cdi_FETCH-LOGICAL-c3179-4c83ff7ee56d2a80458fb3a9b3d6f7c97a157bc514becb78f9e01e31c64c35053
container_end_page n/a
container_issue 4
container_start_page
container_title Annalen der Physik
container_volume 532
creator Yan, Yu
Qi, Lu
Wang, Dong‐Yang
Xing, Yan
Wang, Hong‐Fu
Zhang, Shou
description A scheme to investigate the topological properties in a two‐leg Kitaev ladder system composed of two Kitaev chains is proposed. In the case of two identical Kitaev chains, it is found that the interchain hopping amplitude plays a significant role in the separation of the energy spectrum and in inducing a topologically nontrivial phase, while the interchain pairing strength only affects the size of the energy gap. Moreover, another situation that the system consists of two non‐identical Kitaev chains is also investigated and the corresponding phase diagram is calculated. It is found that two pairs of degenerate nonzero edge modes will, respectively, appear in the upper and lower energy gaps when the interchain hopping amplitude or the interchain pairing strength is large enough. Furthermore, it is pointed out that the winding number is quantitatively equivalent to half of the number of zero energy edge modes in our system. In the case of two identical Kitaev chains, the interchain hopping amplitude induces a topologically nontrivial phase. Two pairs of nonzero edge modes appear when the interchain hopping amplitude or interchain pairing strength is large enough in another case of two non‐identical Kitaev chains. The winding number is equivalent to half of the number of zero energy edge modes.
doi_str_mv 10.1002/andp.201900479
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2389132764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389132764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3179-4c83ff7ee56d2a80458fb3a9b3d6f7c97a157bc514becb78f9e01e31c64c35053</originalsourceid><addsrcrecordid>eNqFULtOwzAUtRBIVNCV2RJzih9xHI9Vy0tEUKlhthzHKa7SONgtVTc-gW_kS3DVCkame-_ReVwdAK4wGmGEyI3q6n5EEBYIpVycgAFmBCc0z8UpGCCEaNxReg6GISzjiRgiiKQDMC9d71q3sFq1cPamgoGlV12wa-s6GF2P4NSqhVerAG1EYbl1359fhVnAJ7tW5gMWqq6Nh_NdWJvVJThrVBvM8DgvwOvdbTl5SIqX-8fJuEg0xVwkqc5p03BjWFYTFb9jeVNRJSpaZw3XgivMeKUZTiujK543wiBsKNZZqilDjF6A64Nv7937xoS1XLqN72KkJDQXmBKepZE1OrC0dyF408je25XyO4mR3Hcn993J3-6iQBwEW9ua3T9sOX6ezv60Pyt_cvo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389132764</pqid></control><display><type>article</type><title>Topological Phase Transition and Phase Diagrams in a Two‐Leg Kitaev Ladder System</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Yan, Yu ; Qi, Lu ; Wang, Dong‐Yang ; Xing, Yan ; Wang, Hong‐Fu ; Zhang, Shou</creator><creatorcontrib>Yan, Yu ; Qi, Lu ; Wang, Dong‐Yang ; Xing, Yan ; Wang, Hong‐Fu ; Zhang, Shou</creatorcontrib><description>A scheme to investigate the topological properties in a two‐leg Kitaev ladder system composed of two Kitaev chains is proposed. In the case of two identical Kitaev chains, it is found that the interchain hopping amplitude plays a significant role in the separation of the energy spectrum and in inducing a topologically nontrivial phase, while the interchain pairing strength only affects the size of the energy gap. Moreover, another situation that the system consists of two non‐identical Kitaev chains is also investigated and the corresponding phase diagram is calculated. It is found that two pairs of degenerate nonzero edge modes will, respectively, appear in the upper and lower energy gaps when the interchain hopping amplitude or the interchain pairing strength is large enough. Furthermore, it is pointed out that the winding number is quantitatively equivalent to half of the number of zero energy edge modes in our system. In the case of two identical Kitaev chains, the interchain hopping amplitude induces a topologically nontrivial phase. Two pairs of nonzero edge modes appear when the interchain hopping amplitude or interchain pairing strength is large enough in another case of two non‐identical Kitaev chains. The winding number is equivalent to half of the number of zero energy edge modes.</description><identifier>ISSN: 0003-3804</identifier><identifier>EISSN: 1521-3889</identifier><identifier>DOI: 10.1002/andp.201900479</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Amplitudes ; Chains ; Energy gap ; Energy spectra ; Kitaev chains ; Phase diagrams ; Phase transitions ; topological invariants ; topological phase transitions ; Topology</subject><ispartof>Annalen der Physik, 2020-04, Vol.532 (4), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3179-4c83ff7ee56d2a80458fb3a9b3d6f7c97a157bc514becb78f9e01e31c64c35053</citedby><cites>FETCH-LOGICAL-c3179-4c83ff7ee56d2a80458fb3a9b3d6f7c97a157bc514becb78f9e01e31c64c35053</cites><orcidid>0000-0002-6778-6330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yan, Yu</creatorcontrib><creatorcontrib>Qi, Lu</creatorcontrib><creatorcontrib>Wang, Dong‐Yang</creatorcontrib><creatorcontrib>Xing, Yan</creatorcontrib><creatorcontrib>Wang, Hong‐Fu</creatorcontrib><creatorcontrib>Zhang, Shou</creatorcontrib><title>Topological Phase Transition and Phase Diagrams in a Two‐Leg Kitaev Ladder System</title><title>Annalen der Physik</title><description>A scheme to investigate the topological properties in a two‐leg Kitaev ladder system composed of two Kitaev chains is proposed. In the case of two identical Kitaev chains, it is found that the interchain hopping amplitude plays a significant role in the separation of the energy spectrum and in inducing a topologically nontrivial phase, while the interchain pairing strength only affects the size of the energy gap. Moreover, another situation that the system consists of two non‐identical Kitaev chains is also investigated and the corresponding phase diagram is calculated. It is found that two pairs of degenerate nonzero edge modes will, respectively, appear in the upper and lower energy gaps when the interchain hopping amplitude or the interchain pairing strength is large enough. Furthermore, it is pointed out that the winding number is quantitatively equivalent to half of the number of zero energy edge modes in our system. In the case of two identical Kitaev chains, the interchain hopping amplitude induces a topologically nontrivial phase. Two pairs of nonzero edge modes appear when the interchain hopping amplitude or interchain pairing strength is large enough in another case of two non‐identical Kitaev chains. The winding number is equivalent to half of the number of zero energy edge modes.</description><subject>Amplitudes</subject><subject>Chains</subject><subject>Energy gap</subject><subject>Energy spectra</subject><subject>Kitaev chains</subject><subject>Phase diagrams</subject><subject>Phase transitions</subject><subject>topological invariants</subject><subject>topological phase transitions</subject><subject>Topology</subject><issn>0003-3804</issn><issn>1521-3889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFULtOwzAUtRBIVNCV2RJzih9xHI9Vy0tEUKlhthzHKa7SONgtVTc-gW_kS3DVCkame-_ReVwdAK4wGmGEyI3q6n5EEBYIpVycgAFmBCc0z8UpGCCEaNxReg6GISzjiRgiiKQDMC9d71q3sFq1cPamgoGlV12wa-s6GF2P4NSqhVerAG1EYbl1359fhVnAJ7tW5gMWqq6Nh_NdWJvVJThrVBvM8DgvwOvdbTl5SIqX-8fJuEg0xVwkqc5p03BjWFYTFb9jeVNRJSpaZw3XgivMeKUZTiujK543wiBsKNZZqilDjF6A64Nv7937xoS1XLqN72KkJDQXmBKepZE1OrC0dyF408je25XyO4mR3Hcn993J3-6iQBwEW9ua3T9sOX6ezv60Pyt_cvo</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Yan, Yu</creator><creator>Qi, Lu</creator><creator>Wang, Dong‐Yang</creator><creator>Xing, Yan</creator><creator>Wang, Hong‐Fu</creator><creator>Zhang, Shou</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6778-6330</orcidid></search><sort><creationdate>202004</creationdate><title>Topological Phase Transition and Phase Diagrams in a Two‐Leg Kitaev Ladder System</title><author>Yan, Yu ; Qi, Lu ; Wang, Dong‐Yang ; Xing, Yan ; Wang, Hong‐Fu ; Zhang, Shou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3179-4c83ff7ee56d2a80458fb3a9b3d6f7c97a157bc514becb78f9e01e31c64c35053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplitudes</topic><topic>Chains</topic><topic>Energy gap</topic><topic>Energy spectra</topic><topic>Kitaev chains</topic><topic>Phase diagrams</topic><topic>Phase transitions</topic><topic>topological invariants</topic><topic>topological phase transitions</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Yu</creatorcontrib><creatorcontrib>Qi, Lu</creatorcontrib><creatorcontrib>Wang, Dong‐Yang</creatorcontrib><creatorcontrib>Xing, Yan</creatorcontrib><creatorcontrib>Wang, Hong‐Fu</creatorcontrib><creatorcontrib>Zhang, Shou</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Annalen der Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Yu</au><au>Qi, Lu</au><au>Wang, Dong‐Yang</au><au>Xing, Yan</au><au>Wang, Hong‐Fu</au><au>Zhang, Shou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological Phase Transition and Phase Diagrams in a Two‐Leg Kitaev Ladder System</atitle><jtitle>Annalen der Physik</jtitle><date>2020-04</date><risdate>2020</risdate><volume>532</volume><issue>4</issue><epage>n/a</epage><issn>0003-3804</issn><eissn>1521-3889</eissn><abstract>A scheme to investigate the topological properties in a two‐leg Kitaev ladder system composed of two Kitaev chains is proposed. In the case of two identical Kitaev chains, it is found that the interchain hopping amplitude plays a significant role in the separation of the energy spectrum and in inducing a topologically nontrivial phase, while the interchain pairing strength only affects the size of the energy gap. Moreover, another situation that the system consists of two non‐identical Kitaev chains is also investigated and the corresponding phase diagram is calculated. It is found that two pairs of degenerate nonzero edge modes will, respectively, appear in the upper and lower energy gaps when the interchain hopping amplitude or the interchain pairing strength is large enough. Furthermore, it is pointed out that the winding number is quantitatively equivalent to half of the number of zero energy edge modes in our system. In the case of two identical Kitaev chains, the interchain hopping amplitude induces a topologically nontrivial phase. Two pairs of nonzero edge modes appear when the interchain hopping amplitude or interchain pairing strength is large enough in another case of two non‐identical Kitaev chains. The winding number is equivalent to half of the number of zero energy edge modes.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/andp.201900479</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6778-6330</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0003-3804
ispartof Annalen der Physik, 2020-04, Vol.532 (4), p.n/a
issn 0003-3804
1521-3889
language eng
recordid cdi_proquest_journals_2389132764
source Wiley-Blackwell Read & Publish Collection
subjects Amplitudes
Chains
Energy gap
Energy spectra
Kitaev chains
Phase diagrams
Phase transitions
topological invariants
topological phase transitions
Topology
title Topological Phase Transition and Phase Diagrams in a Two‐Leg Kitaev Ladder System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A07%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20Phase%20Transition%20and%20Phase%20Diagrams%20in%20a%20Two%E2%80%90Leg%20Kitaev%20Ladder%20System&rft.jtitle=Annalen%20der%20Physik&rft.au=Yan,%20Yu&rft.date=2020-04&rft.volume=532&rft.issue=4&rft.epage=n/a&rft.issn=0003-3804&rft.eissn=1521-3889&rft_id=info:doi/10.1002/andp.201900479&rft_dat=%3Cproquest_cross%3E2389132764%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3179-4c83ff7ee56d2a80458fb3a9b3d6f7c97a157bc514becb78f9e01e31c64c35053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2389132764&rft_id=info:pmid/&rfr_iscdi=true