Loading…
Topological Phase Transition and Phase Diagrams in a Two‐Leg Kitaev Ladder System
A scheme to investigate the topological properties in a two‐leg Kitaev ladder system composed of two Kitaev chains is proposed. In the case of two identical Kitaev chains, it is found that the interchain hopping amplitude plays a significant role in the separation of the energy spectrum and in induc...
Saved in:
Published in: | Annalen der Physik 2020-04, Vol.532 (4), p.n/a |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c3179-4c83ff7ee56d2a80458fb3a9b3d6f7c97a157bc514becb78f9e01e31c64c35053 |
---|---|
cites | cdi_FETCH-LOGICAL-c3179-4c83ff7ee56d2a80458fb3a9b3d6f7c97a157bc514becb78f9e01e31c64c35053 |
container_end_page | n/a |
container_issue | 4 |
container_start_page | |
container_title | Annalen der Physik |
container_volume | 532 |
creator | Yan, Yu Qi, Lu Wang, Dong‐Yang Xing, Yan Wang, Hong‐Fu Zhang, Shou |
description | A scheme to investigate the topological properties in a two‐leg Kitaev ladder system composed of two Kitaev chains is proposed. In the case of two identical Kitaev chains, it is found that the interchain hopping amplitude plays a significant role in the separation of the energy spectrum and in inducing a topologically nontrivial phase, while the interchain pairing strength only affects the size of the energy gap. Moreover, another situation that the system consists of two non‐identical Kitaev chains is also investigated and the corresponding phase diagram is calculated. It is found that two pairs of degenerate nonzero edge modes will, respectively, appear in the upper and lower energy gaps when the interchain hopping amplitude or the interchain pairing strength is large enough. Furthermore, it is pointed out that the winding number is quantitatively equivalent to half of the number of zero energy edge modes in our system.
In the case of two identical Kitaev chains, the interchain hopping amplitude induces a topologically nontrivial phase. Two pairs of nonzero edge modes appear when the interchain hopping amplitude or interchain pairing strength is large enough in another case of two non‐identical Kitaev chains. The winding number is equivalent to half of the number of zero energy edge modes. |
doi_str_mv | 10.1002/andp.201900479 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2389132764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389132764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3179-4c83ff7ee56d2a80458fb3a9b3d6f7c97a157bc514becb78f9e01e31c64c35053</originalsourceid><addsrcrecordid>eNqFULtOwzAUtRBIVNCV2RJzih9xHI9Vy0tEUKlhthzHKa7SONgtVTc-gW_kS3DVCkame-_ReVwdAK4wGmGEyI3q6n5EEBYIpVycgAFmBCc0z8UpGCCEaNxReg6GISzjiRgiiKQDMC9d71q3sFq1cPamgoGlV12wa-s6GF2P4NSqhVerAG1EYbl1359fhVnAJ7tW5gMWqq6Nh_NdWJvVJThrVBvM8DgvwOvdbTl5SIqX-8fJuEg0xVwkqc5p03BjWFYTFb9jeVNRJSpaZw3XgivMeKUZTiujK543wiBsKNZZqilDjF6A64Nv7937xoS1XLqN72KkJDQXmBKepZE1OrC0dyF408je25XyO4mR3Hcn993J3-6iQBwEW9ua3T9sOX6ezv60Pyt_cvo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389132764</pqid></control><display><type>article</type><title>Topological Phase Transition and Phase Diagrams in a Two‐Leg Kitaev Ladder System</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Yan, Yu ; Qi, Lu ; Wang, Dong‐Yang ; Xing, Yan ; Wang, Hong‐Fu ; Zhang, Shou</creator><creatorcontrib>Yan, Yu ; Qi, Lu ; Wang, Dong‐Yang ; Xing, Yan ; Wang, Hong‐Fu ; Zhang, Shou</creatorcontrib><description>A scheme to investigate the topological properties in a two‐leg Kitaev ladder system composed of two Kitaev chains is proposed. In the case of two identical Kitaev chains, it is found that the interchain hopping amplitude plays a significant role in the separation of the energy spectrum and in inducing a topologically nontrivial phase, while the interchain pairing strength only affects the size of the energy gap. Moreover, another situation that the system consists of two non‐identical Kitaev chains is also investigated and the corresponding phase diagram is calculated. It is found that two pairs of degenerate nonzero edge modes will, respectively, appear in the upper and lower energy gaps when the interchain hopping amplitude or the interchain pairing strength is large enough. Furthermore, it is pointed out that the winding number is quantitatively equivalent to half of the number of zero energy edge modes in our system.
In the case of two identical Kitaev chains, the interchain hopping amplitude induces a topologically nontrivial phase. Two pairs of nonzero edge modes appear when the interchain hopping amplitude or interchain pairing strength is large enough in another case of two non‐identical Kitaev chains. The winding number is equivalent to half of the number of zero energy edge modes.</description><identifier>ISSN: 0003-3804</identifier><identifier>EISSN: 1521-3889</identifier><identifier>DOI: 10.1002/andp.201900479</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Amplitudes ; Chains ; Energy gap ; Energy spectra ; Kitaev chains ; Phase diagrams ; Phase transitions ; topological invariants ; topological phase transitions ; Topology</subject><ispartof>Annalen der Physik, 2020-04, Vol.532 (4), p.n/a</ispartof><rights>2020 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3179-4c83ff7ee56d2a80458fb3a9b3d6f7c97a157bc514becb78f9e01e31c64c35053</citedby><cites>FETCH-LOGICAL-c3179-4c83ff7ee56d2a80458fb3a9b3d6f7c97a157bc514becb78f9e01e31c64c35053</cites><orcidid>0000-0002-6778-6330</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yan, Yu</creatorcontrib><creatorcontrib>Qi, Lu</creatorcontrib><creatorcontrib>Wang, Dong‐Yang</creatorcontrib><creatorcontrib>Xing, Yan</creatorcontrib><creatorcontrib>Wang, Hong‐Fu</creatorcontrib><creatorcontrib>Zhang, Shou</creatorcontrib><title>Topological Phase Transition and Phase Diagrams in a Two‐Leg Kitaev Ladder System</title><title>Annalen der Physik</title><description>A scheme to investigate the topological properties in a two‐leg Kitaev ladder system composed of two Kitaev chains is proposed. In the case of two identical Kitaev chains, it is found that the interchain hopping amplitude plays a significant role in the separation of the energy spectrum and in inducing a topologically nontrivial phase, while the interchain pairing strength only affects the size of the energy gap. Moreover, another situation that the system consists of two non‐identical Kitaev chains is also investigated and the corresponding phase diagram is calculated. It is found that two pairs of degenerate nonzero edge modes will, respectively, appear in the upper and lower energy gaps when the interchain hopping amplitude or the interchain pairing strength is large enough. Furthermore, it is pointed out that the winding number is quantitatively equivalent to half of the number of zero energy edge modes in our system.
In the case of two identical Kitaev chains, the interchain hopping amplitude induces a topologically nontrivial phase. Two pairs of nonzero edge modes appear when the interchain hopping amplitude or interchain pairing strength is large enough in another case of two non‐identical Kitaev chains. The winding number is equivalent to half of the number of zero energy edge modes.</description><subject>Amplitudes</subject><subject>Chains</subject><subject>Energy gap</subject><subject>Energy spectra</subject><subject>Kitaev chains</subject><subject>Phase diagrams</subject><subject>Phase transitions</subject><subject>topological invariants</subject><subject>topological phase transitions</subject><subject>Topology</subject><issn>0003-3804</issn><issn>1521-3889</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNqFULtOwzAUtRBIVNCV2RJzih9xHI9Vy0tEUKlhthzHKa7SONgtVTc-gW_kS3DVCkame-_ReVwdAK4wGmGEyI3q6n5EEBYIpVycgAFmBCc0z8UpGCCEaNxReg6GISzjiRgiiKQDMC9d71q3sFq1cPamgoGlV12wa-s6GF2P4NSqhVerAG1EYbl1359fhVnAJ7tW5gMWqq6Nh_NdWJvVJThrVBvM8DgvwOvdbTl5SIqX-8fJuEg0xVwkqc5p03BjWFYTFb9jeVNRJSpaZw3XgivMeKUZTiujK543wiBsKNZZqilDjF6A64Nv7937xoS1XLqN72KkJDQXmBKepZE1OrC0dyF408je25XyO4mR3Hcn993J3-6iQBwEW9ua3T9sOX6ezv60Pyt_cvo</recordid><startdate>202004</startdate><enddate>202004</enddate><creator>Yan, Yu</creator><creator>Qi, Lu</creator><creator>Wang, Dong‐Yang</creator><creator>Xing, Yan</creator><creator>Wang, Hong‐Fu</creator><creator>Zhang, Shou</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6778-6330</orcidid></search><sort><creationdate>202004</creationdate><title>Topological Phase Transition and Phase Diagrams in a Two‐Leg Kitaev Ladder System</title><author>Yan, Yu ; Qi, Lu ; Wang, Dong‐Yang ; Xing, Yan ; Wang, Hong‐Fu ; Zhang, Shou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3179-4c83ff7ee56d2a80458fb3a9b3d6f7c97a157bc514becb78f9e01e31c64c35053</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Amplitudes</topic><topic>Chains</topic><topic>Energy gap</topic><topic>Energy spectra</topic><topic>Kitaev chains</topic><topic>Phase diagrams</topic><topic>Phase transitions</topic><topic>topological invariants</topic><topic>topological phase transitions</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yan, Yu</creatorcontrib><creatorcontrib>Qi, Lu</creatorcontrib><creatorcontrib>Wang, Dong‐Yang</creatorcontrib><creatorcontrib>Xing, Yan</creatorcontrib><creatorcontrib>Wang, Hong‐Fu</creatorcontrib><creatorcontrib>Zhang, Shou</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Annalen der Physik</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yan, Yu</au><au>Qi, Lu</au><au>Wang, Dong‐Yang</au><au>Xing, Yan</au><au>Wang, Hong‐Fu</au><au>Zhang, Shou</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Topological Phase Transition and Phase Diagrams in a Two‐Leg Kitaev Ladder System</atitle><jtitle>Annalen der Physik</jtitle><date>2020-04</date><risdate>2020</risdate><volume>532</volume><issue>4</issue><epage>n/a</epage><issn>0003-3804</issn><eissn>1521-3889</eissn><abstract>A scheme to investigate the topological properties in a two‐leg Kitaev ladder system composed of two Kitaev chains is proposed. In the case of two identical Kitaev chains, it is found that the interchain hopping amplitude plays a significant role in the separation of the energy spectrum and in inducing a topologically nontrivial phase, while the interchain pairing strength only affects the size of the energy gap. Moreover, another situation that the system consists of two non‐identical Kitaev chains is also investigated and the corresponding phase diagram is calculated. It is found that two pairs of degenerate nonzero edge modes will, respectively, appear in the upper and lower energy gaps when the interchain hopping amplitude or the interchain pairing strength is large enough. Furthermore, it is pointed out that the winding number is quantitatively equivalent to half of the number of zero energy edge modes in our system.
In the case of two identical Kitaev chains, the interchain hopping amplitude induces a topologically nontrivial phase. Two pairs of nonzero edge modes appear when the interchain hopping amplitude or interchain pairing strength is large enough in another case of two non‐identical Kitaev chains. The winding number is equivalent to half of the number of zero energy edge modes.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/andp.201900479</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-6778-6330</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-3804 |
ispartof | Annalen der Physik, 2020-04, Vol.532 (4), p.n/a |
issn | 0003-3804 1521-3889 |
language | eng |
recordid | cdi_proquest_journals_2389132764 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Amplitudes Chains Energy gap Energy spectra Kitaev chains Phase diagrams Phase transitions topological invariants topological phase transitions Topology |
title | Topological Phase Transition and Phase Diagrams in a Two‐Leg Kitaev Ladder System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A07%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Topological%20Phase%20Transition%20and%20Phase%20Diagrams%20in%20a%20Two%E2%80%90Leg%20Kitaev%20Ladder%20System&rft.jtitle=Annalen%20der%20Physik&rft.au=Yan,%20Yu&rft.date=2020-04&rft.volume=532&rft.issue=4&rft.epage=n/a&rft.issn=0003-3804&rft.eissn=1521-3889&rft_id=info:doi/10.1002/andp.201900479&rft_dat=%3Cproquest_cross%3E2389132764%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3179-4c83ff7ee56d2a80458fb3a9b3d6f7c97a157bc514becb78f9e01e31c64c35053%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2389132764&rft_id=info:pmid/&rfr_iscdi=true |