Loading…
Commercial scale membrane distillation for solar desalination
Membrane distillation is an attractive technology for solar-powered decentralized desalination that has not yet reached commercial breakthrough on a large scale. The main barriers are energy consumption and cost. Since the latter are mostly related to the former, thermal energy efficiency is key to...
Saved in:
Published in: | npj clean water 2018-10, Vol.1 (1), Article 20 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-384e4c2be9b495bd278ed51453abe3640fca167bf70b33545df290b9fee6f4603 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-384e4c2be9b495bd278ed51453abe3640fca167bf70b33545df290b9fee6f4603 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | npj clean water |
container_volume | 1 |
creator | Zaragoza, G. Andrés-Mañas, J. A Ruiz-Aguirre, A. |
description | Membrane distillation is an attractive technology for solar-powered decentralized desalination that has not yet reached commercial breakthrough on a large scale. The main barriers are energy consumption and cost. Since the latter are mostly related to the former, thermal energy efficiency is key to assessing the potential of the different available membrane distillation systems at a commercial scale. As discussed here, existing membrane distillation technologies use mostly flat sheet membranes in plate and frame and spiral-wound modules. Modules based on hollow fibre membranes are also considered, as well as the concept of multi-effect vacuum membrane distillation for improved heat recovery. The heat efficiency of each system is analysed based on available experimental results. Better internal heat recovery and capacity for upscaling are found to be important elements of distinction which make multi-channelled spiral-wound modules working in air-gap configuration stand out currently, with the lowest heat consumption of all large scale modules. Potential for improvement of this and other technologies is also discussed, and an estimation based on the associated costs for solar energy is used for establishing boundary conditions towards the implementation of membrane distillation for solar desalination. |
doi_str_mv | 10.1038/s41545-018-0020-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2389677238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389677238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-384e4c2be9b495bd278ed51453abe3640fca167bf70b33545df290b9fee6f4603</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouKz7A7wVPEfz2TQHD7L4BQte9BySdiJd0mZNugf315u1gl48zTC87zszD0KXlFxTwpubLKgUEhPaYEIYwYcTtGBEaqwIV6d_-nO0ynlLiohTISVfoNt1HAZIbW9DlVsboBpgcMmOUHV9nvoQ7NTHsfIxVTkGm6oOsg39-D2-QGfehgyrn7pEbw_3r-snvHl5fF7fbXDLpZ4wbwSIljnQTmjpOqYa6GS5gFsHvBbEt5bWynlFHOfllc4zTZz2ALUXNeFLdDXn7lL82EOezDbu01hWGsYbXStVSlHRWdWmmHMCb3apH2z6NJSYIygzgzIFlDmCMofiYbMnF-34Duk3-X_TFy6ca2U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389677238</pqid></control><display><type>article</type><title>Commercial scale membrane distillation for solar desalination</title><source>Publicly Available Content Database</source><creator>Zaragoza, G. ; Andrés-Mañas, J. A ; Ruiz-Aguirre, A.</creator><creatorcontrib>Zaragoza, G. ; Andrés-Mañas, J. A ; Ruiz-Aguirre, A.</creatorcontrib><description>Membrane distillation is an attractive technology for solar-powered decentralized desalination that has not yet reached commercial breakthrough on a large scale. The main barriers are energy consumption and cost. Since the latter are mostly related to the former, thermal energy efficiency is key to assessing the potential of the different available membrane distillation systems at a commercial scale. As discussed here, existing membrane distillation technologies use mostly flat sheet membranes in plate and frame and spiral-wound modules. Modules based on hollow fibre membranes are also considered, as well as the concept of multi-effect vacuum membrane distillation for improved heat recovery. The heat efficiency of each system is analysed based on available experimental results. Better internal heat recovery and capacity for upscaling are found to be important elements of distinction which make multi-channelled spiral-wound modules working in air-gap configuration stand out currently, with the lowest heat consumption of all large scale modules. Potential for improvement of this and other technologies is also discussed, and an estimation based on the associated costs for solar energy is used for establishing boundary conditions towards the implementation of membrane distillation for solar desalination.</description><identifier>ISSN: 2059-7037</identifier><identifier>EISSN: 2059-7037</identifier><identifier>DOI: 10.1038/s41545-018-0020-z</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/25 ; 704/172 ; Air gaps ; Aquatic Pollution ; Boundary conditions ; Desalination ; Distillation ; Earth and Environmental Science ; Energy consumption ; Energy costs ; Energy efficiency ; Environment ; Heat ; Heat recovery ; Heat recovery systems ; Hollow fiber membranes ; Membranes ; Nanotechnology ; Perspective ; Solar energy ; Solar power ; Spiral wound modules ; Thermal energy ; Vacuum ; Vacuum distillation ; Waste Water Technology ; Water Industry/Water Technologies ; Water Management ; Water Pollution Control ; Water Quality/Water Pollution</subject><ispartof>npj clean water, 2018-10, Vol.1 (1), Article 20</ispartof><rights>The Author(s) 2018</rights><rights>The Author(s) 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-384e4c2be9b495bd278ed51453abe3640fca167bf70b33545df290b9fee6f4603</citedby><cites>FETCH-LOGICAL-c359t-384e4c2be9b495bd278ed51453abe3640fca167bf70b33545df290b9fee6f4603</cites><orcidid>0000-0002-4452-9980</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2389677238?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Zaragoza, G.</creatorcontrib><creatorcontrib>Andrés-Mañas, J. A</creatorcontrib><creatorcontrib>Ruiz-Aguirre, A.</creatorcontrib><title>Commercial scale membrane distillation for solar desalination</title><title>npj clean water</title><addtitle>npj Clean Water</addtitle><description>Membrane distillation is an attractive technology for solar-powered decentralized desalination that has not yet reached commercial breakthrough on a large scale. The main barriers are energy consumption and cost. Since the latter are mostly related to the former, thermal energy efficiency is key to assessing the potential of the different available membrane distillation systems at a commercial scale. As discussed here, existing membrane distillation technologies use mostly flat sheet membranes in plate and frame and spiral-wound modules. Modules based on hollow fibre membranes are also considered, as well as the concept of multi-effect vacuum membrane distillation for improved heat recovery. The heat efficiency of each system is analysed based on available experimental results. Better internal heat recovery and capacity for upscaling are found to be important elements of distinction which make multi-channelled spiral-wound modules working in air-gap configuration stand out currently, with the lowest heat consumption of all large scale modules. Potential for improvement of this and other technologies is also discussed, and an estimation based on the associated costs for solar energy is used for establishing boundary conditions towards the implementation of membrane distillation for solar desalination.</description><subject>639/766/25</subject><subject>704/172</subject><subject>Air gaps</subject><subject>Aquatic Pollution</subject><subject>Boundary conditions</subject><subject>Desalination</subject><subject>Distillation</subject><subject>Earth and Environmental Science</subject><subject>Energy consumption</subject><subject>Energy costs</subject><subject>Energy efficiency</subject><subject>Environment</subject><subject>Heat</subject><subject>Heat recovery</subject><subject>Heat recovery systems</subject><subject>Hollow fiber membranes</subject><subject>Membranes</subject><subject>Nanotechnology</subject><subject>Perspective</subject><subject>Solar energy</subject><subject>Solar power</subject><subject>Spiral wound modules</subject><subject>Thermal energy</subject><subject>Vacuum</subject><subject>Vacuum distillation</subject><subject>Waste Water Technology</subject><subject>Water Industry/Water Technologies</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Water Quality/Water Pollution</subject><issn>2059-7037</issn><issn>2059-7037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kE1LxDAQhoMouKz7A7wVPEfz2TQHD7L4BQte9BySdiJd0mZNugf315u1gl48zTC87zszD0KXlFxTwpubLKgUEhPaYEIYwYcTtGBEaqwIV6d_-nO0ynlLiohTISVfoNt1HAZIbW9DlVsboBpgcMmOUHV9nvoQ7NTHsfIxVTkGm6oOsg39-D2-QGfehgyrn7pEbw_3r-snvHl5fF7fbXDLpZ4wbwSIljnQTmjpOqYa6GS5gFsHvBbEt5bWynlFHOfllc4zTZz2ALUXNeFLdDXn7lL82EOezDbu01hWGsYbXStVSlHRWdWmmHMCb3apH2z6NJSYIygzgzIFlDmCMofiYbMnF-34Duk3-X_TFy6ca2U</recordid><startdate>20181030</startdate><enddate>20181030</enddate><creator>Zaragoza, G.</creator><creator>Andrés-Mañas, J. A</creator><creator>Ruiz-Aguirre, A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0000-0002-4452-9980</orcidid></search><sort><creationdate>20181030</creationdate><title>Commercial scale membrane distillation for solar desalination</title><author>Zaragoza, G. ; Andrés-Mañas, J. A ; Ruiz-Aguirre, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-384e4c2be9b495bd278ed51453abe3640fca167bf70b33545df290b9fee6f4603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/766/25</topic><topic>704/172</topic><topic>Air gaps</topic><topic>Aquatic Pollution</topic><topic>Boundary conditions</topic><topic>Desalination</topic><topic>Distillation</topic><topic>Earth and Environmental Science</topic><topic>Energy consumption</topic><topic>Energy costs</topic><topic>Energy efficiency</topic><topic>Environment</topic><topic>Heat</topic><topic>Heat recovery</topic><topic>Heat recovery systems</topic><topic>Hollow fiber membranes</topic><topic>Membranes</topic><topic>Nanotechnology</topic><topic>Perspective</topic><topic>Solar energy</topic><topic>Solar power</topic><topic>Spiral wound modules</topic><topic>Thermal energy</topic><topic>Vacuum</topic><topic>Vacuum distillation</topic><topic>Waste Water Technology</topic><topic>Water Industry/Water Technologies</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Water Quality/Water Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaragoza, G.</creatorcontrib><creatorcontrib>Andrés-Mañas, J. A</creatorcontrib><creatorcontrib>Ruiz-Aguirre, A.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>npj clean water</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaragoza, G.</au><au>Andrés-Mañas, J. A</au><au>Ruiz-Aguirre, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Commercial scale membrane distillation for solar desalination</atitle><jtitle>npj clean water</jtitle><stitle>npj Clean Water</stitle><date>2018-10-30</date><risdate>2018</risdate><volume>1</volume><issue>1</issue><artnum>20</artnum><issn>2059-7037</issn><eissn>2059-7037</eissn><abstract>Membrane distillation is an attractive technology for solar-powered decentralized desalination that has not yet reached commercial breakthrough on a large scale. The main barriers are energy consumption and cost. Since the latter are mostly related to the former, thermal energy efficiency is key to assessing the potential of the different available membrane distillation systems at a commercial scale. As discussed here, existing membrane distillation technologies use mostly flat sheet membranes in plate and frame and spiral-wound modules. Modules based on hollow fibre membranes are also considered, as well as the concept of multi-effect vacuum membrane distillation for improved heat recovery. The heat efficiency of each system is analysed based on available experimental results. Better internal heat recovery and capacity for upscaling are found to be important elements of distinction which make multi-channelled spiral-wound modules working in air-gap configuration stand out currently, with the lowest heat consumption of all large scale modules. Potential for improvement of this and other technologies is also discussed, and an estimation based on the associated costs for solar energy is used for establishing boundary conditions towards the implementation of membrane distillation for solar desalination.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41545-018-0020-z</doi><orcidid>https://orcid.org/0000-0002-4452-9980</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2059-7037 |
ispartof | npj clean water, 2018-10, Vol.1 (1), Article 20 |
issn | 2059-7037 2059-7037 |
language | eng |
recordid | cdi_proquest_journals_2389677238 |
source | Publicly Available Content Database |
subjects | 639/766/25 704/172 Air gaps Aquatic Pollution Boundary conditions Desalination Distillation Earth and Environmental Science Energy consumption Energy costs Energy efficiency Environment Heat Heat recovery Heat recovery systems Hollow fiber membranes Membranes Nanotechnology Perspective Solar energy Solar power Spiral wound modules Thermal energy Vacuum Vacuum distillation Waste Water Technology Water Industry/Water Technologies Water Management Water Pollution Control Water Quality/Water Pollution |
title | Commercial scale membrane distillation for solar desalination |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A49%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Commercial%20scale%20membrane%20distillation%20for%20solar%20desalination&rft.jtitle=npj%20clean%20water&rft.au=Zaragoza,%20G.&rft.date=2018-10-30&rft.volume=1&rft.issue=1&rft.artnum=20&rft.issn=2059-7037&rft.eissn=2059-7037&rft_id=info:doi/10.1038/s41545-018-0020-z&rft_dat=%3Cproquest_cross%3E2389677238%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-384e4c2be9b495bd278ed51453abe3640fca167bf70b33545df290b9fee6f4603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2389677238&rft_id=info:pmid/&rfr_iscdi=true |