Loading…

Commercial scale membrane distillation for solar desalination

Membrane distillation is an attractive technology for solar-powered decentralized desalination that has not yet reached commercial breakthrough on a large scale. The main barriers are energy consumption and cost. Since the latter are mostly related to the former, thermal energy efficiency is key to...

Full description

Saved in:
Bibliographic Details
Published in:npj clean water 2018-10, Vol.1 (1), Article 20
Main Authors: Zaragoza, G., Andrés-Mañas, J. A, Ruiz-Aguirre, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-384e4c2be9b495bd278ed51453abe3640fca167bf70b33545df290b9fee6f4603
cites cdi_FETCH-LOGICAL-c359t-384e4c2be9b495bd278ed51453abe3640fca167bf70b33545df290b9fee6f4603
container_end_page
container_issue 1
container_start_page
container_title npj clean water
container_volume 1
creator Zaragoza, G.
Andrés-Mañas, J. A
Ruiz-Aguirre, A.
description Membrane distillation is an attractive technology for solar-powered decentralized desalination that has not yet reached commercial breakthrough on a large scale. The main barriers are energy consumption and cost. Since the latter are mostly related to the former, thermal energy efficiency is key to assessing the potential of the different available membrane distillation systems at a commercial scale. As discussed here, existing membrane distillation technologies use mostly flat sheet membranes in plate and frame and spiral-wound modules. Modules based on hollow fibre membranes are also considered, as well as the concept of multi-effect vacuum membrane distillation for improved heat recovery. The heat efficiency of each system is analysed based on available experimental results. Better internal heat recovery and capacity for upscaling are found to be important elements of distinction which make multi-channelled spiral-wound modules working in air-gap configuration stand out currently, with the lowest heat consumption of all large scale modules. Potential for improvement of this and other technologies is also discussed, and an estimation based on the associated costs for solar energy is used for establishing boundary conditions towards the implementation of membrane distillation for solar desalination.
doi_str_mv 10.1038/s41545-018-0020-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2389677238</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389677238</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-384e4c2be9b495bd278ed51453abe3640fca167bf70b33545df290b9fee6f4603</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouKz7A7wVPEfz2TQHD7L4BQte9BySdiJd0mZNugf315u1gl48zTC87zszD0KXlFxTwpubLKgUEhPaYEIYwYcTtGBEaqwIV6d_-nO0ynlLiohTISVfoNt1HAZIbW9DlVsboBpgcMmOUHV9nvoQ7NTHsfIxVTkGm6oOsg39-D2-QGfehgyrn7pEbw_3r-snvHl5fF7fbXDLpZ4wbwSIljnQTmjpOqYa6GS5gFsHvBbEt5bWynlFHOfllc4zTZz2ALUXNeFLdDXn7lL82EOezDbu01hWGsYbXStVSlHRWdWmmHMCb3apH2z6NJSYIygzgzIFlDmCMofiYbMnF-34Duk3-X_TFy6ca2U</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389677238</pqid></control><display><type>article</type><title>Commercial scale membrane distillation for solar desalination</title><source>Publicly Available Content Database</source><creator>Zaragoza, G. ; Andrés-Mañas, J. A ; Ruiz-Aguirre, A.</creator><creatorcontrib>Zaragoza, G. ; Andrés-Mañas, J. A ; Ruiz-Aguirre, A.</creatorcontrib><description>Membrane distillation is an attractive technology for solar-powered decentralized desalination that has not yet reached commercial breakthrough on a large scale. The main barriers are energy consumption and cost. Since the latter are mostly related to the former, thermal energy efficiency is key to assessing the potential of the different available membrane distillation systems at a commercial scale. As discussed here, existing membrane distillation technologies use mostly flat sheet membranes in plate and frame and spiral-wound modules. Modules based on hollow fibre membranes are also considered, as well as the concept of multi-effect vacuum membrane distillation for improved heat recovery. The heat efficiency of each system is analysed based on available experimental results. Better internal heat recovery and capacity for upscaling are found to be important elements of distinction which make multi-channelled spiral-wound modules working in air-gap configuration stand out currently, with the lowest heat consumption of all large scale modules. Potential for improvement of this and other technologies is also discussed, and an estimation based on the associated costs for solar energy is used for establishing boundary conditions towards the implementation of membrane distillation for solar desalination.</description><identifier>ISSN: 2059-7037</identifier><identifier>EISSN: 2059-7037</identifier><identifier>DOI: 10.1038/s41545-018-0020-z</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/25 ; 704/172 ; Air gaps ; Aquatic Pollution ; Boundary conditions ; Desalination ; Distillation ; Earth and Environmental Science ; Energy consumption ; Energy costs ; Energy efficiency ; Environment ; Heat ; Heat recovery ; Heat recovery systems ; Hollow fiber membranes ; Membranes ; Nanotechnology ; Perspective ; Solar energy ; Solar power ; Spiral wound modules ; Thermal energy ; Vacuum ; Vacuum distillation ; Waste Water Technology ; Water Industry/Water Technologies ; Water Management ; Water Pollution Control ; Water Quality/Water Pollution</subject><ispartof>npj clean water, 2018-10, Vol.1 (1), Article 20</ispartof><rights>The Author(s) 2018</rights><rights>The Author(s) 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-384e4c2be9b495bd278ed51453abe3640fca167bf70b33545df290b9fee6f4603</citedby><cites>FETCH-LOGICAL-c359t-384e4c2be9b495bd278ed51453abe3640fca167bf70b33545df290b9fee6f4603</cites><orcidid>0000-0002-4452-9980</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2389677238?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Zaragoza, G.</creatorcontrib><creatorcontrib>Andrés-Mañas, J. A</creatorcontrib><creatorcontrib>Ruiz-Aguirre, A.</creatorcontrib><title>Commercial scale membrane distillation for solar desalination</title><title>npj clean water</title><addtitle>npj Clean Water</addtitle><description>Membrane distillation is an attractive technology for solar-powered decentralized desalination that has not yet reached commercial breakthrough on a large scale. The main barriers are energy consumption and cost. Since the latter are mostly related to the former, thermal energy efficiency is key to assessing the potential of the different available membrane distillation systems at a commercial scale. As discussed here, existing membrane distillation technologies use mostly flat sheet membranes in plate and frame and spiral-wound modules. Modules based on hollow fibre membranes are also considered, as well as the concept of multi-effect vacuum membrane distillation for improved heat recovery. The heat efficiency of each system is analysed based on available experimental results. Better internal heat recovery and capacity for upscaling are found to be important elements of distinction which make multi-channelled spiral-wound modules working in air-gap configuration stand out currently, with the lowest heat consumption of all large scale modules. Potential for improvement of this and other technologies is also discussed, and an estimation based on the associated costs for solar energy is used for establishing boundary conditions towards the implementation of membrane distillation for solar desalination.</description><subject>639/766/25</subject><subject>704/172</subject><subject>Air gaps</subject><subject>Aquatic Pollution</subject><subject>Boundary conditions</subject><subject>Desalination</subject><subject>Distillation</subject><subject>Earth and Environmental Science</subject><subject>Energy consumption</subject><subject>Energy costs</subject><subject>Energy efficiency</subject><subject>Environment</subject><subject>Heat</subject><subject>Heat recovery</subject><subject>Heat recovery systems</subject><subject>Hollow fiber membranes</subject><subject>Membranes</subject><subject>Nanotechnology</subject><subject>Perspective</subject><subject>Solar energy</subject><subject>Solar power</subject><subject>Spiral wound modules</subject><subject>Thermal energy</subject><subject>Vacuum</subject><subject>Vacuum distillation</subject><subject>Waste Water Technology</subject><subject>Water Industry/Water Technologies</subject><subject>Water Management</subject><subject>Water Pollution Control</subject><subject>Water Quality/Water Pollution</subject><issn>2059-7037</issn><issn>2059-7037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kE1LxDAQhoMouKz7A7wVPEfz2TQHD7L4BQte9BySdiJd0mZNugf315u1gl48zTC87zszD0KXlFxTwpubLKgUEhPaYEIYwYcTtGBEaqwIV6d_-nO0ynlLiohTISVfoNt1HAZIbW9DlVsboBpgcMmOUHV9nvoQ7NTHsfIxVTkGm6oOsg39-D2-QGfehgyrn7pEbw_3r-snvHl5fF7fbXDLpZ4wbwSIljnQTmjpOqYa6GS5gFsHvBbEt5bWynlFHOfllc4zTZz2ALUXNeFLdDXn7lL82EOezDbu01hWGsYbXStVSlHRWdWmmHMCb3apH2z6NJSYIygzgzIFlDmCMofiYbMnF-34Duk3-X_TFy6ca2U</recordid><startdate>20181030</startdate><enddate>20181030</enddate><creator>Zaragoza, G.</creator><creator>Andrés-Mañas, J. A</creator><creator>Ruiz-Aguirre, A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><orcidid>https://orcid.org/0000-0002-4452-9980</orcidid></search><sort><creationdate>20181030</creationdate><title>Commercial scale membrane distillation for solar desalination</title><author>Zaragoza, G. ; Andrés-Mañas, J. A ; Ruiz-Aguirre, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-384e4c2be9b495bd278ed51453abe3640fca167bf70b33545df290b9fee6f4603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/766/25</topic><topic>704/172</topic><topic>Air gaps</topic><topic>Aquatic Pollution</topic><topic>Boundary conditions</topic><topic>Desalination</topic><topic>Distillation</topic><topic>Earth and Environmental Science</topic><topic>Energy consumption</topic><topic>Energy costs</topic><topic>Energy efficiency</topic><topic>Environment</topic><topic>Heat</topic><topic>Heat recovery</topic><topic>Heat recovery systems</topic><topic>Hollow fiber membranes</topic><topic>Membranes</topic><topic>Nanotechnology</topic><topic>Perspective</topic><topic>Solar energy</topic><topic>Solar power</topic><topic>Spiral wound modules</topic><topic>Thermal energy</topic><topic>Vacuum</topic><topic>Vacuum distillation</topic><topic>Waste Water Technology</topic><topic>Water Industry/Water Technologies</topic><topic>Water Management</topic><topic>Water Pollution Control</topic><topic>Water Quality/Water Pollution</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zaragoza, G.</creatorcontrib><creatorcontrib>Andrés-Mañas, J. A</creatorcontrib><creatorcontrib>Ruiz-Aguirre, A.</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><jtitle>npj clean water</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zaragoza, G.</au><au>Andrés-Mañas, J. A</au><au>Ruiz-Aguirre, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Commercial scale membrane distillation for solar desalination</atitle><jtitle>npj clean water</jtitle><stitle>npj Clean Water</stitle><date>2018-10-30</date><risdate>2018</risdate><volume>1</volume><issue>1</issue><artnum>20</artnum><issn>2059-7037</issn><eissn>2059-7037</eissn><abstract>Membrane distillation is an attractive technology for solar-powered decentralized desalination that has not yet reached commercial breakthrough on a large scale. The main barriers are energy consumption and cost. Since the latter are mostly related to the former, thermal energy efficiency is key to assessing the potential of the different available membrane distillation systems at a commercial scale. As discussed here, existing membrane distillation technologies use mostly flat sheet membranes in plate and frame and spiral-wound modules. Modules based on hollow fibre membranes are also considered, as well as the concept of multi-effect vacuum membrane distillation for improved heat recovery. The heat efficiency of each system is analysed based on available experimental results. Better internal heat recovery and capacity for upscaling are found to be important elements of distinction which make multi-channelled spiral-wound modules working in air-gap configuration stand out currently, with the lowest heat consumption of all large scale modules. Potential for improvement of this and other technologies is also discussed, and an estimation based on the associated costs for solar energy is used for establishing boundary conditions towards the implementation of membrane distillation for solar desalination.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41545-018-0020-z</doi><orcidid>https://orcid.org/0000-0002-4452-9980</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2059-7037
ispartof npj clean water, 2018-10, Vol.1 (1), Article 20
issn 2059-7037
2059-7037
language eng
recordid cdi_proquest_journals_2389677238
source Publicly Available Content Database
subjects 639/766/25
704/172
Air gaps
Aquatic Pollution
Boundary conditions
Desalination
Distillation
Earth and Environmental Science
Energy consumption
Energy costs
Energy efficiency
Environment
Heat
Heat recovery
Heat recovery systems
Hollow fiber membranes
Membranes
Nanotechnology
Perspective
Solar energy
Solar power
Spiral wound modules
Thermal energy
Vacuum
Vacuum distillation
Waste Water Technology
Water Industry/Water Technologies
Water Management
Water Pollution Control
Water Quality/Water Pollution
title Commercial scale membrane distillation for solar desalination
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T17%3A49%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Commercial%20scale%20membrane%20distillation%20for%20solar%20desalination&rft.jtitle=npj%20clean%20water&rft.au=Zaragoza,%20G.&rft.date=2018-10-30&rft.volume=1&rft.issue=1&rft.artnum=20&rft.issn=2059-7037&rft.eissn=2059-7037&rft_id=info:doi/10.1038/s41545-018-0020-z&rft_dat=%3Cproquest_cross%3E2389677238%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-384e4c2be9b495bd278ed51453abe3640fca167bf70b33545df290b9fee6f4603%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2389677238&rft_id=info:pmid/&rfr_iscdi=true