Loading…
Moderate strain induced indirect bandgap and conduction electrons in MoS2 single layers
MoS 2 single layers are valued for their sizeable direct bandgap at the heart of the envisaged electronic and optoelectronic applications. Here we experimentally demonstrate that moderate strain values (~2%) can already trigger an indirect bandgap transition and induce a finite charge carrier densit...
Saved in:
Published in: | NPJ 2D materials and applications 2019-10, Vol.3 (1), Article 39 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c425t-5f926ac930951e564df8442e4618bf92285f508a14f25107afe37744b8bfff903 |
---|---|
cites | cdi_FETCH-LOGICAL-c425t-5f926ac930951e564df8442e4618bf92285f508a14f25107afe37744b8bfff903 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | NPJ 2D materials and applications |
container_volume | 3 |
creator | Pető, János Dobrik, Gergely Kukucska, Gergő Vancsó, Péter Koós, Antal A. Koltai, János Nemes-Incze, Péter Hwang, Chanyong Tapasztó, Levente |
description | MoS
2
single layers are valued for their sizeable direct bandgap at the heart of the envisaged electronic and optoelectronic applications. Here we experimentally demonstrate that moderate strain values (~2%) can already trigger an indirect bandgap transition and induce a finite charge carrier density in 2D MoS
2
layers. A conclusive proof of the direct-to-indirect bandgap transition is provided by directly comparing the electronic and optical bandgaps of strained MoS
2
single layers obtained from tunneling spectroscopy and photoluminescence measurements of MoS
2
nanobubbles. Upon 2% biaxial tensile strain, the electronic gap becomes significantly smaller (1.45 ± 0.15 eV) than the optical direct gap (1.73 ± 0.1 eV), clearly evidencing a strain-induced direct to indirect bandgap transition. Moreover, the Fermi level can shift inside the conduction band already in moderately strained (~2%) MoS
2
single layers conferring them a metallic character. |
doi_str_mv | 10.1038/s41699-019-0123-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2389680993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389680993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-5f926ac930951e564df8442e4618bf92285f508a14f25107afe37744b8bfff903</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOIzzA9wFXFfzbJOlDD4GZnCh4jJk2puhQ01q0i7m35tSQTcuLufC-c69cBC6puSWEq7ukqCl1gWh0zBeyDO0YFxXRUU5O_-zX6JVSkdCMklLIekCfexCA9EOgNMQbetx65uxhmbSNkI94L31zcH2OAuuw-QObfAYumzG4FMm8S68Mpxaf-gAd_YEMV2hC2e7BKsfXaL3x4e39XOxfXnarO-3RS2YHArpNCttrTnRkoIsReOUEAxESdU-e0xJJ4myVDgmKamsA15VQuyz65wmfIlu5rt9DF8jpMEcwxh9fmkYV7pURGueKTpTdQwpRXCmj-2njSdDiZkqNHOFJhdjpgqNzBk2Z1Jm_QHi7-X_Q98jgHME</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389680993</pqid></control><display><type>article</type><title>Moderate strain induced indirect bandgap and conduction electrons in MoS2 single layers</title><source>Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Pető, János ; Dobrik, Gergely ; Kukucska, Gergő ; Vancsó, Péter ; Koós, Antal A. ; Koltai, János ; Nemes-Incze, Péter ; Hwang, Chanyong ; Tapasztó, Levente</creator><creatorcontrib>Pető, János ; Dobrik, Gergely ; Kukucska, Gergő ; Vancsó, Péter ; Koós, Antal A. ; Koltai, János ; Nemes-Incze, Péter ; Hwang, Chanyong ; Tapasztó, Levente</creatorcontrib><description>MoS
2
single layers are valued for their sizeable direct bandgap at the heart of the envisaged electronic and optoelectronic applications. Here we experimentally demonstrate that moderate strain values (~2%) can already trigger an indirect bandgap transition and induce a finite charge carrier density in 2D MoS
2
layers. A conclusive proof of the direct-to-indirect bandgap transition is provided by directly comparing the electronic and optical bandgaps of strained MoS
2
single layers obtained from tunneling spectroscopy and photoluminescence measurements of MoS
2
nanobubbles. Upon 2% biaxial tensile strain, the electronic gap becomes significantly smaller (1.45 ± 0.15 eV) than the optical direct gap (1.73 ± 0.1 eV), clearly evidencing a strain-induced direct to indirect bandgap transition. Moreover, the Fermi level can shift inside the conduction band already in moderately strained (~2%) MoS
2
single layers conferring them a metallic character.</description><identifier>ISSN: 2397-7132</identifier><identifier>EISSN: 2397-7132</identifier><identifier>DOI: 10.1038/s41699-019-0123-5</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005/1007 ; 639/925/357 ; Carrier density ; Charge density ; Chemistry and Materials Science ; Conduction bands ; Conduction electrons ; Current carriers ; Energy gap ; Materials Science ; Molybdenum disulfide ; Nanotechnology ; Optoelectronics ; Photoluminescence ; Surfaces and Interfaces ; Tensile strain ; Thin Films</subject><ispartof>NPJ 2D materials and applications, 2019-10, Vol.3 (1), Article 39</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-5f926ac930951e564df8442e4618bf92285f508a14f25107afe37744b8bfff903</citedby><cites>FETCH-LOGICAL-c425t-5f926ac930951e564df8442e4618bf92285f508a14f25107afe37744b8bfff903</cites><orcidid>0000-0002-9377-8465 ; 0000-0002-1222-3020 ; 0000-0002-8715-8075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2389680993?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Pető, János</creatorcontrib><creatorcontrib>Dobrik, Gergely</creatorcontrib><creatorcontrib>Kukucska, Gergő</creatorcontrib><creatorcontrib>Vancsó, Péter</creatorcontrib><creatorcontrib>Koós, Antal A.</creatorcontrib><creatorcontrib>Koltai, János</creatorcontrib><creatorcontrib>Nemes-Incze, Péter</creatorcontrib><creatorcontrib>Hwang, Chanyong</creatorcontrib><creatorcontrib>Tapasztó, Levente</creatorcontrib><title>Moderate strain induced indirect bandgap and conduction electrons in MoS2 single layers</title><title>NPJ 2D materials and applications</title><addtitle>npj 2D Mater Appl</addtitle><description>MoS
2
single layers are valued for their sizeable direct bandgap at the heart of the envisaged electronic and optoelectronic applications. Here we experimentally demonstrate that moderate strain values (~2%) can already trigger an indirect bandgap transition and induce a finite charge carrier density in 2D MoS
2
layers. A conclusive proof of the direct-to-indirect bandgap transition is provided by directly comparing the electronic and optical bandgaps of strained MoS
2
single layers obtained from tunneling spectroscopy and photoluminescence measurements of MoS
2
nanobubbles. Upon 2% biaxial tensile strain, the electronic gap becomes significantly smaller (1.45 ± 0.15 eV) than the optical direct gap (1.73 ± 0.1 eV), clearly evidencing a strain-induced direct to indirect bandgap transition. Moreover, the Fermi level can shift inside the conduction band already in moderately strained (~2%) MoS
2
single layers conferring them a metallic character.</description><subject>639/301/1005/1007</subject><subject>639/925/357</subject><subject>Carrier density</subject><subject>Charge density</subject><subject>Chemistry and Materials Science</subject><subject>Conduction bands</subject><subject>Conduction electrons</subject><subject>Current carriers</subject><subject>Energy gap</subject><subject>Materials Science</subject><subject>Molybdenum disulfide</subject><subject>Nanotechnology</subject><subject>Optoelectronics</subject><subject>Photoluminescence</subject><subject>Surfaces and Interfaces</subject><subject>Tensile strain</subject><subject>Thin Films</subject><issn>2397-7132</issn><issn>2397-7132</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kEtLxDAUhYMoOIzzA9wFXFfzbJOlDD4GZnCh4jJk2puhQ01q0i7m35tSQTcuLufC-c69cBC6puSWEq7ukqCl1gWh0zBeyDO0YFxXRUU5O_-zX6JVSkdCMklLIekCfexCA9EOgNMQbetx65uxhmbSNkI94L31zcH2OAuuw-QObfAYumzG4FMm8S68Mpxaf-gAd_YEMV2hC2e7BKsfXaL3x4e39XOxfXnarO-3RS2YHArpNCttrTnRkoIsReOUEAxESdU-e0xJJ4myVDgmKamsA15VQuyz65wmfIlu5rt9DF8jpMEcwxh9fmkYV7pURGueKTpTdQwpRXCmj-2njSdDiZkqNHOFJhdjpgqNzBk2Z1Jm_QHi7-X_Q98jgHME</recordid><startdate>20191025</startdate><enddate>20191025</enddate><creator>Pető, János</creator><creator>Dobrik, Gergely</creator><creator>Kukucska, Gergő</creator><creator>Vancsó, Péter</creator><creator>Koós, Antal A.</creator><creator>Koltai, János</creator><creator>Nemes-Incze, Péter</creator><creator>Hwang, Chanyong</creator><creator>Tapasztó, Levente</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9377-8465</orcidid><orcidid>https://orcid.org/0000-0002-1222-3020</orcidid><orcidid>https://orcid.org/0000-0002-8715-8075</orcidid></search><sort><creationdate>20191025</creationdate><title>Moderate strain induced indirect bandgap and conduction electrons in MoS2 single layers</title><author>Pető, János ; Dobrik, Gergely ; Kukucska, Gergő ; Vancsó, Péter ; Koós, Antal A. ; Koltai, János ; Nemes-Incze, Péter ; Hwang, Chanyong ; Tapasztó, Levente</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-5f926ac930951e564df8442e4618bf92285f508a14f25107afe37744b8bfff903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/1005/1007</topic><topic>639/925/357</topic><topic>Carrier density</topic><topic>Charge density</topic><topic>Chemistry and Materials Science</topic><topic>Conduction bands</topic><topic>Conduction electrons</topic><topic>Current carriers</topic><topic>Energy gap</topic><topic>Materials Science</topic><topic>Molybdenum disulfide</topic><topic>Nanotechnology</topic><topic>Optoelectronics</topic><topic>Photoluminescence</topic><topic>Surfaces and Interfaces</topic><topic>Tensile strain</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pető, János</creatorcontrib><creatorcontrib>Dobrik, Gergely</creatorcontrib><creatorcontrib>Kukucska, Gergő</creatorcontrib><creatorcontrib>Vancsó, Péter</creatorcontrib><creatorcontrib>Koós, Antal A.</creatorcontrib><creatorcontrib>Koltai, János</creatorcontrib><creatorcontrib>Nemes-Incze, Péter</creatorcontrib><creatorcontrib>Hwang, Chanyong</creatorcontrib><creatorcontrib>Tapasztó, Levente</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>NPJ 2D materials and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pető, János</au><au>Dobrik, Gergely</au><au>Kukucska, Gergő</au><au>Vancsó, Péter</au><au>Koós, Antal A.</au><au>Koltai, János</au><au>Nemes-Incze, Péter</au><au>Hwang, Chanyong</au><au>Tapasztó, Levente</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moderate strain induced indirect bandgap and conduction electrons in MoS2 single layers</atitle><jtitle>NPJ 2D materials and applications</jtitle><stitle>npj 2D Mater Appl</stitle><date>2019-10-25</date><risdate>2019</risdate><volume>3</volume><issue>1</issue><artnum>39</artnum><issn>2397-7132</issn><eissn>2397-7132</eissn><abstract>MoS
2
single layers are valued for their sizeable direct bandgap at the heart of the envisaged electronic and optoelectronic applications. Here we experimentally demonstrate that moderate strain values (~2%) can already trigger an indirect bandgap transition and induce a finite charge carrier density in 2D MoS
2
layers. A conclusive proof of the direct-to-indirect bandgap transition is provided by directly comparing the electronic and optical bandgaps of strained MoS
2
single layers obtained from tunneling spectroscopy and photoluminescence measurements of MoS
2
nanobubbles. Upon 2% biaxial tensile strain, the electronic gap becomes significantly smaller (1.45 ± 0.15 eV) than the optical direct gap (1.73 ± 0.1 eV), clearly evidencing a strain-induced direct to indirect bandgap transition. Moreover, the Fermi level can shift inside the conduction band already in moderately strained (~2%) MoS
2
single layers conferring them a metallic character.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41699-019-0123-5</doi><orcidid>https://orcid.org/0000-0002-9377-8465</orcidid><orcidid>https://orcid.org/0000-0002-1222-3020</orcidid><orcidid>https://orcid.org/0000-0002-8715-8075</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2397-7132 |
ispartof | NPJ 2D materials and applications, 2019-10, Vol.3 (1), Article 39 |
issn | 2397-7132 2397-7132 |
language | eng |
recordid | cdi_proquest_journals_2389680993 |
source | Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/301/1005/1007 639/925/357 Carrier density Charge density Chemistry and Materials Science Conduction bands Conduction electrons Current carriers Energy gap Materials Science Molybdenum disulfide Nanotechnology Optoelectronics Photoluminescence Surfaces and Interfaces Tensile strain Thin Films |
title | Moderate strain induced indirect bandgap and conduction electrons in MoS2 single layers |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A10%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moderate%20strain%20induced%20indirect%20bandgap%20and%20conduction%20electrons%20in%20MoS2%20single%20layers&rft.jtitle=NPJ%202D%20materials%20and%20applications&rft.au=Pet%C5%91,%20J%C3%A1nos&rft.date=2019-10-25&rft.volume=3&rft.issue=1&rft.artnum=39&rft.issn=2397-7132&rft.eissn=2397-7132&rft_id=info:doi/10.1038/s41699-019-0123-5&rft_dat=%3Cproquest_cross%3E2389680993%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-5f926ac930951e564df8442e4618bf92285f508a14f25107afe37744b8bfff903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2389680993&rft_id=info:pmid/&rfr_iscdi=true |