Loading…

Moderate strain induced indirect bandgap and conduction electrons in MoS2 single layers

MoS 2 single layers are valued for their sizeable direct bandgap at the heart of the envisaged electronic and optoelectronic applications. Here we experimentally demonstrate that moderate strain values (~2%) can already trigger an indirect bandgap transition and induce a finite charge carrier densit...

Full description

Saved in:
Bibliographic Details
Published in:NPJ 2D materials and applications 2019-10, Vol.3 (1), Article 39
Main Authors: Pető, János, Dobrik, Gergely, Kukucska, Gergő, Vancsó, Péter, Koós, Antal A., Koltai, János, Nemes-Incze, Péter, Hwang, Chanyong, Tapasztó, Levente
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c425t-5f926ac930951e564df8442e4618bf92285f508a14f25107afe37744b8bfff903
cites cdi_FETCH-LOGICAL-c425t-5f926ac930951e564df8442e4618bf92285f508a14f25107afe37744b8bfff903
container_end_page
container_issue 1
container_start_page
container_title NPJ 2D materials and applications
container_volume 3
creator Pető, János
Dobrik, Gergely
Kukucska, Gergő
Vancsó, Péter
Koós, Antal A.
Koltai, János
Nemes-Incze, Péter
Hwang, Chanyong
Tapasztó, Levente
description MoS 2 single layers are valued for their sizeable direct bandgap at the heart of the envisaged electronic and optoelectronic applications. Here we experimentally demonstrate that moderate strain values (~2%) can already trigger an indirect bandgap transition and induce a finite charge carrier density in 2D MoS 2 layers. A conclusive proof of the direct-to-indirect bandgap transition is provided by directly comparing the electronic and optical bandgaps of strained MoS 2 single layers obtained from tunneling spectroscopy and photoluminescence measurements of MoS 2 nanobubbles. Upon 2% biaxial tensile strain, the electronic gap becomes significantly smaller (1.45 ± 0.15 eV) than the optical direct gap (1.73 ± 0.1 eV), clearly evidencing a strain-induced direct to indirect bandgap transition. Moreover, the Fermi level can shift inside the conduction band already in moderately strained (~2%) MoS 2 single layers conferring them a metallic character.
doi_str_mv 10.1038/s41699-019-0123-5
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2389680993</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389680993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-5f926ac930951e564df8442e4618bf92285f508a14f25107afe37744b8bfff903</originalsourceid><addsrcrecordid>eNp1kEtLxDAUhYMoOIzzA9wFXFfzbJOlDD4GZnCh4jJk2puhQ01q0i7m35tSQTcuLufC-c69cBC6puSWEq7ukqCl1gWh0zBeyDO0YFxXRUU5O_-zX6JVSkdCMklLIekCfexCA9EOgNMQbetx65uxhmbSNkI94L31zcH2OAuuw-QObfAYumzG4FMm8S68Mpxaf-gAd_YEMV2hC2e7BKsfXaL3x4e39XOxfXnarO-3RS2YHArpNCttrTnRkoIsReOUEAxESdU-e0xJJ4myVDgmKamsA15VQuyz65wmfIlu5rt9DF8jpMEcwxh9fmkYV7pURGueKTpTdQwpRXCmj-2njSdDiZkqNHOFJhdjpgqNzBk2Z1Jm_QHi7-X_Q98jgHME</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389680993</pqid></control><display><type>article</type><title>Moderate strain induced indirect bandgap and conduction electrons in MoS2 single layers</title><source>Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Pető, János ; Dobrik, Gergely ; Kukucska, Gergő ; Vancsó, Péter ; Koós, Antal A. ; Koltai, János ; Nemes-Incze, Péter ; Hwang, Chanyong ; Tapasztó, Levente</creator><creatorcontrib>Pető, János ; Dobrik, Gergely ; Kukucska, Gergő ; Vancsó, Péter ; Koós, Antal A. ; Koltai, János ; Nemes-Incze, Péter ; Hwang, Chanyong ; Tapasztó, Levente</creatorcontrib><description>MoS 2 single layers are valued for their sizeable direct bandgap at the heart of the envisaged electronic and optoelectronic applications. Here we experimentally demonstrate that moderate strain values (~2%) can already trigger an indirect bandgap transition and induce a finite charge carrier density in 2D MoS 2 layers. A conclusive proof of the direct-to-indirect bandgap transition is provided by directly comparing the electronic and optical bandgaps of strained MoS 2 single layers obtained from tunneling spectroscopy and photoluminescence measurements of MoS 2 nanobubbles. Upon 2% biaxial tensile strain, the electronic gap becomes significantly smaller (1.45 ± 0.15 eV) than the optical direct gap (1.73 ± 0.1 eV), clearly evidencing a strain-induced direct to indirect bandgap transition. Moreover, the Fermi level can shift inside the conduction band already in moderately strained (~2%) MoS 2 single layers conferring them a metallic character.</description><identifier>ISSN: 2397-7132</identifier><identifier>EISSN: 2397-7132</identifier><identifier>DOI: 10.1038/s41699-019-0123-5</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/1005/1007 ; 639/925/357 ; Carrier density ; Charge density ; Chemistry and Materials Science ; Conduction bands ; Conduction electrons ; Current carriers ; Energy gap ; Materials Science ; Molybdenum disulfide ; Nanotechnology ; Optoelectronics ; Photoluminescence ; Surfaces and Interfaces ; Tensile strain ; Thin Films</subject><ispartof>NPJ 2D materials and applications, 2019-10, Vol.3 (1), Article 39</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-5f926ac930951e564df8442e4618bf92285f508a14f25107afe37744b8bfff903</citedby><cites>FETCH-LOGICAL-c425t-5f926ac930951e564df8442e4618bf92285f508a14f25107afe37744b8bfff903</cites><orcidid>0000-0002-9377-8465 ; 0000-0002-1222-3020 ; 0000-0002-8715-8075</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2389680993?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590</link.rule.ids></links><search><creatorcontrib>Pető, János</creatorcontrib><creatorcontrib>Dobrik, Gergely</creatorcontrib><creatorcontrib>Kukucska, Gergő</creatorcontrib><creatorcontrib>Vancsó, Péter</creatorcontrib><creatorcontrib>Koós, Antal A.</creatorcontrib><creatorcontrib>Koltai, János</creatorcontrib><creatorcontrib>Nemes-Incze, Péter</creatorcontrib><creatorcontrib>Hwang, Chanyong</creatorcontrib><creatorcontrib>Tapasztó, Levente</creatorcontrib><title>Moderate strain induced indirect bandgap and conduction electrons in MoS2 single layers</title><title>NPJ 2D materials and applications</title><addtitle>npj 2D Mater Appl</addtitle><description>MoS 2 single layers are valued for their sizeable direct bandgap at the heart of the envisaged electronic and optoelectronic applications. Here we experimentally demonstrate that moderate strain values (~2%) can already trigger an indirect bandgap transition and induce a finite charge carrier density in 2D MoS 2 layers. A conclusive proof of the direct-to-indirect bandgap transition is provided by directly comparing the electronic and optical bandgaps of strained MoS 2 single layers obtained from tunneling spectroscopy and photoluminescence measurements of MoS 2 nanobubbles. Upon 2% biaxial tensile strain, the electronic gap becomes significantly smaller (1.45 ± 0.15 eV) than the optical direct gap (1.73 ± 0.1 eV), clearly evidencing a strain-induced direct to indirect bandgap transition. Moreover, the Fermi level can shift inside the conduction band already in moderately strained (~2%) MoS 2 single layers conferring them a metallic character.</description><subject>639/301/1005/1007</subject><subject>639/925/357</subject><subject>Carrier density</subject><subject>Charge density</subject><subject>Chemistry and Materials Science</subject><subject>Conduction bands</subject><subject>Conduction electrons</subject><subject>Current carriers</subject><subject>Energy gap</subject><subject>Materials Science</subject><subject>Molybdenum disulfide</subject><subject>Nanotechnology</subject><subject>Optoelectronics</subject><subject>Photoluminescence</subject><subject>Surfaces and Interfaces</subject><subject>Tensile strain</subject><subject>Thin Films</subject><issn>2397-7132</issn><issn>2397-7132</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1kEtLxDAUhYMoOIzzA9wFXFfzbJOlDD4GZnCh4jJk2puhQ01q0i7m35tSQTcuLufC-c69cBC6puSWEq7ukqCl1gWh0zBeyDO0YFxXRUU5O_-zX6JVSkdCMklLIekCfexCA9EOgNMQbetx65uxhmbSNkI94L31zcH2OAuuw-QObfAYumzG4FMm8S68Mpxaf-gAd_YEMV2hC2e7BKsfXaL3x4e39XOxfXnarO-3RS2YHArpNCttrTnRkoIsReOUEAxESdU-e0xJJ4myVDgmKamsA15VQuyz65wmfIlu5rt9DF8jpMEcwxh9fmkYV7pURGueKTpTdQwpRXCmj-2njSdDiZkqNHOFJhdjpgqNzBk2Z1Jm_QHi7-X_Q98jgHME</recordid><startdate>20191025</startdate><enddate>20191025</enddate><creator>Pető, János</creator><creator>Dobrik, Gergely</creator><creator>Kukucska, Gergő</creator><creator>Vancsó, Péter</creator><creator>Koós, Antal A.</creator><creator>Koltai, János</creator><creator>Nemes-Incze, Péter</creator><creator>Hwang, Chanyong</creator><creator>Tapasztó, Levente</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>KB.</scope><scope>L6V</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><orcidid>https://orcid.org/0000-0002-9377-8465</orcidid><orcidid>https://orcid.org/0000-0002-1222-3020</orcidid><orcidid>https://orcid.org/0000-0002-8715-8075</orcidid></search><sort><creationdate>20191025</creationdate><title>Moderate strain induced indirect bandgap and conduction electrons in MoS2 single layers</title><author>Pető, János ; Dobrik, Gergely ; Kukucska, Gergő ; Vancsó, Péter ; Koós, Antal A. ; Koltai, János ; Nemes-Incze, Péter ; Hwang, Chanyong ; Tapasztó, Levente</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-5f926ac930951e564df8442e4618bf92285f508a14f25107afe37744b8bfff903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/301/1005/1007</topic><topic>639/925/357</topic><topic>Carrier density</topic><topic>Charge density</topic><topic>Chemistry and Materials Science</topic><topic>Conduction bands</topic><topic>Conduction electrons</topic><topic>Current carriers</topic><topic>Energy gap</topic><topic>Materials Science</topic><topic>Molybdenum disulfide</topic><topic>Nanotechnology</topic><topic>Optoelectronics</topic><topic>Photoluminescence</topic><topic>Surfaces and Interfaces</topic><topic>Tensile strain</topic><topic>Thin Films</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pető, János</creatorcontrib><creatorcontrib>Dobrik, Gergely</creatorcontrib><creatorcontrib>Kukucska, Gergő</creatorcontrib><creatorcontrib>Vancsó, Péter</creatorcontrib><creatorcontrib>Koós, Antal A.</creatorcontrib><creatorcontrib>Koltai, János</creatorcontrib><creatorcontrib>Nemes-Incze, Péter</creatorcontrib><creatorcontrib>Hwang, Chanyong</creatorcontrib><creatorcontrib>Tapasztó, Levente</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><jtitle>NPJ 2D materials and applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pető, János</au><au>Dobrik, Gergely</au><au>Kukucska, Gergő</au><au>Vancsó, Péter</au><au>Koós, Antal A.</au><au>Koltai, János</au><au>Nemes-Incze, Péter</au><au>Hwang, Chanyong</au><au>Tapasztó, Levente</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Moderate strain induced indirect bandgap and conduction electrons in MoS2 single layers</atitle><jtitle>NPJ 2D materials and applications</jtitle><stitle>npj 2D Mater Appl</stitle><date>2019-10-25</date><risdate>2019</risdate><volume>3</volume><issue>1</issue><artnum>39</artnum><issn>2397-7132</issn><eissn>2397-7132</eissn><abstract>MoS 2 single layers are valued for their sizeable direct bandgap at the heart of the envisaged electronic and optoelectronic applications. Here we experimentally demonstrate that moderate strain values (~2%) can already trigger an indirect bandgap transition and induce a finite charge carrier density in 2D MoS 2 layers. A conclusive proof of the direct-to-indirect bandgap transition is provided by directly comparing the electronic and optical bandgaps of strained MoS 2 single layers obtained from tunneling spectroscopy and photoluminescence measurements of MoS 2 nanobubbles. Upon 2% biaxial tensile strain, the electronic gap becomes significantly smaller (1.45 ± 0.15 eV) than the optical direct gap (1.73 ± 0.1 eV), clearly evidencing a strain-induced direct to indirect bandgap transition. Moreover, the Fermi level can shift inside the conduction band already in moderately strained (~2%) MoS 2 single layers conferring them a metallic character.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41699-019-0123-5</doi><orcidid>https://orcid.org/0000-0002-9377-8465</orcidid><orcidid>https://orcid.org/0000-0002-1222-3020</orcidid><orcidid>https://orcid.org/0000-0002-8715-8075</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2397-7132
ispartof NPJ 2D materials and applications, 2019-10, Vol.3 (1), Article 39
issn 2397-7132
2397-7132
language eng
recordid cdi_proquest_journals_2389680993
source Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/301/1005/1007
639/925/357
Carrier density
Charge density
Chemistry and Materials Science
Conduction bands
Conduction electrons
Current carriers
Energy gap
Materials Science
Molybdenum disulfide
Nanotechnology
Optoelectronics
Photoluminescence
Surfaces and Interfaces
Tensile strain
Thin Films
title Moderate strain induced indirect bandgap and conduction electrons in MoS2 single layers
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T04%3A10%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Moderate%20strain%20induced%20indirect%20bandgap%20and%20conduction%20electrons%20in%20MoS2%20single%20layers&rft.jtitle=NPJ%202D%20materials%20and%20applications&rft.au=Pet%C5%91,%20J%C3%A1nos&rft.date=2019-10-25&rft.volume=3&rft.issue=1&rft.artnum=39&rft.issn=2397-7132&rft.eissn=2397-7132&rft_id=info:doi/10.1038/s41699-019-0123-5&rft_dat=%3Cproquest_cross%3E2389680993%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-5f926ac930951e564df8442e4618bf92285f508a14f25107afe37744b8bfff903%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2389680993&rft_id=info:pmid/&rfr_iscdi=true