Loading…

OSSE Assessment of Underwater Glider Arrays to Improve Ocean Model Initialization for Tropical Cyclone Prediction

Credible tropical cyclone (TC) intensity prediction by coupled models requires accurate forecasts of enthalpy flux from ocean to atmosphere, which in turn requires accurate forecasts of sea surface temperature cooling beneath storms. Initial ocean fields must accurately represent ocean mesoscale fea...

Full description

Saved in:
Bibliographic Details
Published in:Journal of atmospheric and oceanic technology 2020-03, Vol.37 (3), p.467-487
Main Authors: Halliwell, George R., Goni, Gustavo J., Mehari, Michael F., Kourafalou, Villy H., Baringer, Molly, Atlas, Robert
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c316t-c56276e6b4e6db0c6f67f794fd8012370af4260c093d8eddcf04d3954358fa403
cites cdi_FETCH-LOGICAL-c316t-c56276e6b4e6db0c6f67f794fd8012370af4260c093d8eddcf04d3954358fa403
container_end_page 487
container_issue 3
container_start_page 467
container_title Journal of atmospheric and oceanic technology
container_volume 37
creator Halliwell, George R.
Goni, Gustavo J.
Mehari, Michael F.
Kourafalou, Villy H.
Baringer, Molly
Atlas, Robert
description Credible tropical cyclone (TC) intensity prediction by coupled models requires accurate forecasts of enthalpy flux from ocean to atmosphere, which in turn requires accurate forecasts of sea surface temperature cooling beneath storms. Initial ocean fields must accurately represent ocean mesoscale features and the associated thermal and density structure. Observing system simulation experiments (OSSEs) are performed to quantitatively assess the impact of assimilating profiles collected from multiple underwater gliders deployed over the western North Atlantic Ocean TC region, emphasizing advantages gained by profiling from moving versus stationary platforms. Assimilating ocean profiles collected repeatedly at fixed locations produces large root-mean-square error reduction only within ~50 km of each profiler for two primary reasons. First, corrections performed during individual update cycles tend to introduce unphysical eddy structure resulting from smoothing properties of the background error covariance matrix and the tapering of innovations by a localization radius function. Second, advection produces rapid nonlinear error growth at larger distances from profiler locations. The ability of each individual moving glider to cross gradients and map mesoscale structure in its vicinity substantially reduces this nonlinear error growth. Glider arrays can be deployed with horizontal separation distances that are 50%–100% larger than those of fixed-location profilers to achieve similar mesoscale error reduction. By contrast, substantial larger-scale bias reduction in upper-ocean heat content can be achieved by deploying profiler arrays with separation distances up to several hundred kilometers, with moving gliders providing only modest additional improvement. Expected sensitivity of results to study region and data assimilation method is discussed.
doi_str_mv 10.1175/JTECH-D-18-0195.1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2389731491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389731491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-c56276e6b4e6db0c6f67f794fd8012370af4260c093d8eddcf04d3954358fa403</originalsourceid><addsrcrecordid>eNotkE1PAjEQhhujiYj-AG9NPK_ObHfb3SMBRAwGE-DclH4kJcsW2lWDv95FPc0k82bmmYeQe4RHRFE-va6n45dskmGVAdblI16QAZY5ZFDk_JIMQLA6g1Lk1-QmpR0AIEM-IMflajWlo5RsSnvbdjQ4ummNjV-qs5HOGt_3dBSjOiXaBTrfH2L4tHSprWrpWzC2ofPWd141_lt1PrTUhUjXMRy8Vg0dn3QTWkvfozVen-e35MqpJtm7_zokm-fpuodfLGfz8WiR6R6sy3TJc8Et3xaWmy1o7rhwoi6cqQBzJkC5_jPQUDNTWWO0g8KwuixYWTlVABuSh7-9PfDxw6ZO7sJHbPuTMmdVLRgWNfYp_EvpGFKK1slD9HsVTxJBns3KX7NyIrGSZ7MS2Q9Twmzs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389731491</pqid></control><display><type>article</type><title>OSSE Assessment of Underwater Glider Arrays to Improve Ocean Model Initialization for Tropical Cyclone Prediction</title><source>Freely Accessible Journals</source><creator>Halliwell, George R. ; Goni, Gustavo J. ; Mehari, Michael F. ; Kourafalou, Villy H. ; Baringer, Molly ; Atlas, Robert</creator><creatorcontrib>Halliwell, George R. ; Goni, Gustavo J. ; Mehari, Michael F. ; Kourafalou, Villy H. ; Baringer, Molly ; Atlas, Robert</creatorcontrib><description>Credible tropical cyclone (TC) intensity prediction by coupled models requires accurate forecasts of enthalpy flux from ocean to atmosphere, which in turn requires accurate forecasts of sea surface temperature cooling beneath storms. Initial ocean fields must accurately represent ocean mesoscale features and the associated thermal and density structure. Observing system simulation experiments (OSSEs) are performed to quantitatively assess the impact of assimilating profiles collected from multiple underwater gliders deployed over the western North Atlantic Ocean TC region, emphasizing advantages gained by profiling from moving versus stationary platforms. Assimilating ocean profiles collected repeatedly at fixed locations produces large root-mean-square error reduction only within ~50 km of each profiler for two primary reasons. First, corrections performed during individual update cycles tend to introduce unphysical eddy structure resulting from smoothing properties of the background error covariance matrix and the tapering of innovations by a localization radius function. Second, advection produces rapid nonlinear error growth at larger distances from profiler locations. The ability of each individual moving glider to cross gradients and map mesoscale structure in its vicinity substantially reduces this nonlinear error growth. Glider arrays can be deployed with horizontal separation distances that are 50%–100% larger than those of fixed-location profilers to achieve similar mesoscale error reduction. By contrast, substantial larger-scale bias reduction in upper-ocean heat content can be achieved by deploying profiler arrays with separation distances up to several hundred kilometers, with moving gliders providing only modest additional improvement. Expected sensitivity of results to study region and data assimilation method is discussed.</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/JTECH-D-18-0195.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Advection ; Arrays ; Atmospheric models ; Bias ; Computer simulation ; Corrections ; Covariance matrix ; Cyclones ; Data assimilation ; Data collection ; Design ; Enthalpy ; Error reduction ; Experiments ; General circulation models ; Gliders ; Heat content ; Hurricanes ; Localization ; Mathematical models ; Mesoscale features ; Mesoscale phenomena ; Ocean circulation ; Ocean models ; Oceans ; Profilers ; Profiles ; Salinity ; Sea surface ; Sea surface temperature ; Separation ; Storms ; Surface temperature ; Tapering ; Temperature requirements ; Tropical climate ; Tropical cyclone intensities ; Tropical cyclones ; Underwater ; Underwater gliders ; Underwater vehicles ; Weather forecasting</subject><ispartof>Journal of atmospheric and oceanic technology, 2020-03, Vol.37 (3), p.467-487</ispartof><rights>Copyright American Meteorological Society Mar 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-c56276e6b4e6db0c6f67f794fd8012370af4260c093d8eddcf04d3954358fa403</citedby><cites>FETCH-LOGICAL-c316t-c56276e6b4e6db0c6f67f794fd8012370af4260c093d8eddcf04d3954358fa403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Halliwell, George R.</creatorcontrib><creatorcontrib>Goni, Gustavo J.</creatorcontrib><creatorcontrib>Mehari, Michael F.</creatorcontrib><creatorcontrib>Kourafalou, Villy H.</creatorcontrib><creatorcontrib>Baringer, Molly</creatorcontrib><creatorcontrib>Atlas, Robert</creatorcontrib><title>OSSE Assessment of Underwater Glider Arrays to Improve Ocean Model Initialization for Tropical Cyclone Prediction</title><title>Journal of atmospheric and oceanic technology</title><description>Credible tropical cyclone (TC) intensity prediction by coupled models requires accurate forecasts of enthalpy flux from ocean to atmosphere, which in turn requires accurate forecasts of sea surface temperature cooling beneath storms. Initial ocean fields must accurately represent ocean mesoscale features and the associated thermal and density structure. Observing system simulation experiments (OSSEs) are performed to quantitatively assess the impact of assimilating profiles collected from multiple underwater gliders deployed over the western North Atlantic Ocean TC region, emphasizing advantages gained by profiling from moving versus stationary platforms. Assimilating ocean profiles collected repeatedly at fixed locations produces large root-mean-square error reduction only within ~50 km of each profiler for two primary reasons. First, corrections performed during individual update cycles tend to introduce unphysical eddy structure resulting from smoothing properties of the background error covariance matrix and the tapering of innovations by a localization radius function. Second, advection produces rapid nonlinear error growth at larger distances from profiler locations. The ability of each individual moving glider to cross gradients and map mesoscale structure in its vicinity substantially reduces this nonlinear error growth. Glider arrays can be deployed with horizontal separation distances that are 50%–100% larger than those of fixed-location profilers to achieve similar mesoscale error reduction. By contrast, substantial larger-scale bias reduction in upper-ocean heat content can be achieved by deploying profiler arrays with separation distances up to several hundred kilometers, with moving gliders providing only modest additional improvement. Expected sensitivity of results to study region and data assimilation method is discussed.</description><subject>Advection</subject><subject>Arrays</subject><subject>Atmospheric models</subject><subject>Bias</subject><subject>Computer simulation</subject><subject>Corrections</subject><subject>Covariance matrix</subject><subject>Cyclones</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Design</subject><subject>Enthalpy</subject><subject>Error reduction</subject><subject>Experiments</subject><subject>General circulation models</subject><subject>Gliders</subject><subject>Heat content</subject><subject>Hurricanes</subject><subject>Localization</subject><subject>Mathematical models</subject><subject>Mesoscale features</subject><subject>Mesoscale phenomena</subject><subject>Ocean circulation</subject><subject>Ocean models</subject><subject>Oceans</subject><subject>Profilers</subject><subject>Profiles</subject><subject>Salinity</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Separation</subject><subject>Storms</subject><subject>Surface temperature</subject><subject>Tapering</subject><subject>Temperature requirements</subject><subject>Tropical climate</subject><subject>Tropical cyclone intensities</subject><subject>Tropical cyclones</subject><subject>Underwater</subject><subject>Underwater gliders</subject><subject>Underwater vehicles</subject><subject>Weather forecasting</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkE1PAjEQhhujiYj-AG9NPK_ObHfb3SMBRAwGE-DclH4kJcsW2lWDv95FPc0k82bmmYeQe4RHRFE-va6n45dskmGVAdblI16QAZY5ZFDk_JIMQLA6g1Lk1-QmpR0AIEM-IMflajWlo5RsSnvbdjQ4ummNjV-qs5HOGt_3dBSjOiXaBTrfH2L4tHSprWrpWzC2ofPWd141_lt1PrTUhUjXMRy8Vg0dn3QTWkvfozVen-e35MqpJtm7_zokm-fpuodfLGfz8WiR6R6sy3TJc8Et3xaWmy1o7rhwoi6cqQBzJkC5_jPQUDNTWWO0g8KwuixYWTlVABuSh7-9PfDxw6ZO7sJHbPuTMmdVLRgWNfYp_EvpGFKK1slD9HsVTxJBns3KX7NyIrGSZ7MS2Q9Twmzs</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Halliwell, George R.</creator><creator>Goni, Gustavo J.</creator><creator>Mehari, Michael F.</creator><creator>Kourafalou, Villy H.</creator><creator>Baringer, Molly</creator><creator>Atlas, Robert</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>202003</creationdate><title>OSSE Assessment of Underwater Glider Arrays to Improve Ocean Model Initialization for Tropical Cyclone Prediction</title><author>Halliwell, George R. ; Goni, Gustavo J. ; Mehari, Michael F. ; Kourafalou, Villy H. ; Baringer, Molly ; Atlas, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-c56276e6b4e6db0c6f67f794fd8012370af4260c093d8eddcf04d3954358fa403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Advection</topic><topic>Arrays</topic><topic>Atmospheric models</topic><topic>Bias</topic><topic>Computer simulation</topic><topic>Corrections</topic><topic>Covariance matrix</topic><topic>Cyclones</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Design</topic><topic>Enthalpy</topic><topic>Error reduction</topic><topic>Experiments</topic><topic>General circulation models</topic><topic>Gliders</topic><topic>Heat content</topic><topic>Hurricanes</topic><topic>Localization</topic><topic>Mathematical models</topic><topic>Mesoscale features</topic><topic>Mesoscale phenomena</topic><topic>Ocean circulation</topic><topic>Ocean models</topic><topic>Oceans</topic><topic>Profilers</topic><topic>Profiles</topic><topic>Salinity</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Separation</topic><topic>Storms</topic><topic>Surface temperature</topic><topic>Tapering</topic><topic>Temperature requirements</topic><topic>Tropical climate</topic><topic>Tropical cyclone intensities</topic><topic>Tropical cyclones</topic><topic>Underwater</topic><topic>Underwater gliders</topic><topic>Underwater vehicles</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halliwell, George R.</creatorcontrib><creatorcontrib>Goni, Gustavo J.</creatorcontrib><creatorcontrib>Mehari, Michael F.</creatorcontrib><creatorcontrib>Kourafalou, Villy H.</creatorcontrib><creatorcontrib>Baringer, Molly</creatorcontrib><creatorcontrib>Atlas, Robert</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of atmospheric and oceanic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halliwell, George R.</au><au>Goni, Gustavo J.</au><au>Mehari, Michael F.</au><au>Kourafalou, Villy H.</au><au>Baringer, Molly</au><au>Atlas, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OSSE Assessment of Underwater Glider Arrays to Improve Ocean Model Initialization for Tropical Cyclone Prediction</atitle><jtitle>Journal of atmospheric and oceanic technology</jtitle><date>2020-03</date><risdate>2020</risdate><volume>37</volume><issue>3</issue><spage>467</spage><epage>487</epage><pages>467-487</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><abstract>Credible tropical cyclone (TC) intensity prediction by coupled models requires accurate forecasts of enthalpy flux from ocean to atmosphere, which in turn requires accurate forecasts of sea surface temperature cooling beneath storms. Initial ocean fields must accurately represent ocean mesoscale features and the associated thermal and density structure. Observing system simulation experiments (OSSEs) are performed to quantitatively assess the impact of assimilating profiles collected from multiple underwater gliders deployed over the western North Atlantic Ocean TC region, emphasizing advantages gained by profiling from moving versus stationary platforms. Assimilating ocean profiles collected repeatedly at fixed locations produces large root-mean-square error reduction only within ~50 km of each profiler for two primary reasons. First, corrections performed during individual update cycles tend to introduce unphysical eddy structure resulting from smoothing properties of the background error covariance matrix and the tapering of innovations by a localization radius function. Second, advection produces rapid nonlinear error growth at larger distances from profiler locations. The ability of each individual moving glider to cross gradients and map mesoscale structure in its vicinity substantially reduces this nonlinear error growth. Glider arrays can be deployed with horizontal separation distances that are 50%–100% larger than those of fixed-location profilers to achieve similar mesoscale error reduction. By contrast, substantial larger-scale bias reduction in upper-ocean heat content can be achieved by deploying profiler arrays with separation distances up to several hundred kilometers, with moving gliders providing only modest additional improvement. Expected sensitivity of results to study region and data assimilation method is discussed.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JTECH-D-18-0195.1</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0739-0572
ispartof Journal of atmospheric and oceanic technology, 2020-03, Vol.37 (3), p.467-487
issn 0739-0572
1520-0426
language eng
recordid cdi_proquest_journals_2389731491
source Freely Accessible Journals
subjects Advection
Arrays
Atmospheric models
Bias
Computer simulation
Corrections
Covariance matrix
Cyclones
Data assimilation
Data collection
Design
Enthalpy
Error reduction
Experiments
General circulation models
Gliders
Heat content
Hurricanes
Localization
Mathematical models
Mesoscale features
Mesoscale phenomena
Ocean circulation
Ocean models
Oceans
Profilers
Profiles
Salinity
Sea surface
Sea surface temperature
Separation
Storms
Surface temperature
Tapering
Temperature requirements
Tropical climate
Tropical cyclone intensities
Tropical cyclones
Underwater
Underwater gliders
Underwater vehicles
Weather forecasting
title OSSE Assessment of Underwater Glider Arrays to Improve Ocean Model Initialization for Tropical Cyclone Prediction
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OSSE%20Assessment%20of%20Underwater%20Glider%20Arrays%20to%20Improve%20Ocean%20Model%20Initialization%20for%20Tropical%20Cyclone%20Prediction&rft.jtitle=Journal%20of%20atmospheric%20and%20oceanic%20technology&rft.au=Halliwell,%20George%20R.&rft.date=2020-03&rft.volume=37&rft.issue=3&rft.spage=467&rft.epage=487&rft.pages=467-487&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/JTECH-D-18-0195.1&rft_dat=%3Cproquest_cross%3E2389731491%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-c56276e6b4e6db0c6f67f794fd8012370af4260c093d8eddcf04d3954358fa403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2389731491&rft_id=info:pmid/&rfr_iscdi=true