Loading…
OSSE Assessment of Underwater Glider Arrays to Improve Ocean Model Initialization for Tropical Cyclone Prediction
Credible tropical cyclone (TC) intensity prediction by coupled models requires accurate forecasts of enthalpy flux from ocean to atmosphere, which in turn requires accurate forecasts of sea surface temperature cooling beneath storms. Initial ocean fields must accurately represent ocean mesoscale fea...
Saved in:
Published in: | Journal of atmospheric and oceanic technology 2020-03, Vol.37 (3), p.467-487 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-c56276e6b4e6db0c6f67f794fd8012370af4260c093d8eddcf04d3954358fa403 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-c56276e6b4e6db0c6f67f794fd8012370af4260c093d8eddcf04d3954358fa403 |
container_end_page | 487 |
container_issue | 3 |
container_start_page | 467 |
container_title | Journal of atmospheric and oceanic technology |
container_volume | 37 |
creator | Halliwell, George R. Goni, Gustavo J. Mehari, Michael F. Kourafalou, Villy H. Baringer, Molly Atlas, Robert |
description | Credible tropical cyclone (TC) intensity prediction by coupled models requires accurate forecasts of enthalpy flux from ocean to atmosphere, which in turn requires accurate forecasts of sea surface temperature cooling beneath storms. Initial ocean fields must accurately represent ocean mesoscale features and the associated thermal and density structure. Observing system simulation experiments (OSSEs) are performed to quantitatively assess the impact of assimilating profiles collected from multiple underwater gliders deployed over the western North Atlantic Ocean TC region, emphasizing advantages gained by profiling from moving versus stationary platforms. Assimilating ocean profiles collected repeatedly at fixed locations produces large root-mean-square error reduction only within ~50 km of each profiler for two primary reasons. First, corrections performed during individual update cycles tend to introduce unphysical eddy structure resulting from smoothing properties of the background error covariance matrix and the tapering of innovations by a localization radius function. Second, advection produces rapid nonlinear error growth at larger distances from profiler locations. The ability of each individual moving glider to cross gradients and map mesoscale structure in its vicinity substantially reduces this nonlinear error growth. Glider arrays can be deployed with horizontal separation distances that are 50%–100% larger than those of fixed-location profilers to achieve similar mesoscale error reduction. By contrast, substantial larger-scale bias reduction in upper-ocean heat content can be achieved by deploying profiler arrays with separation distances up to several hundred kilometers, with moving gliders providing only modest additional improvement. Expected sensitivity of results to study region and data assimilation method is discussed. |
doi_str_mv | 10.1175/JTECH-D-18-0195.1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2389731491</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2389731491</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-c56276e6b4e6db0c6f67f794fd8012370af4260c093d8eddcf04d3954358fa403</originalsourceid><addsrcrecordid>eNotkE1PAjEQhhujiYj-AG9NPK_ObHfb3SMBRAwGE-DclH4kJcsW2lWDv95FPc0k82bmmYeQe4RHRFE-va6n45dskmGVAdblI16QAZY5ZFDk_JIMQLA6g1Lk1-QmpR0AIEM-IMflajWlo5RsSnvbdjQ4ummNjV-qs5HOGt_3dBSjOiXaBTrfH2L4tHSprWrpWzC2ofPWd141_lt1PrTUhUjXMRy8Vg0dn3QTWkvfozVen-e35MqpJtm7_zokm-fpuodfLGfz8WiR6R6sy3TJc8Et3xaWmy1o7rhwoi6cqQBzJkC5_jPQUDNTWWO0g8KwuixYWTlVABuSh7-9PfDxw6ZO7sJHbPuTMmdVLRgWNfYp_EvpGFKK1slD9HsVTxJBns3KX7NyIrGSZ7MS2Q9Twmzs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2389731491</pqid></control><display><type>article</type><title>OSSE Assessment of Underwater Glider Arrays to Improve Ocean Model Initialization for Tropical Cyclone Prediction</title><source>Freely Accessible Journals</source><creator>Halliwell, George R. ; Goni, Gustavo J. ; Mehari, Michael F. ; Kourafalou, Villy H. ; Baringer, Molly ; Atlas, Robert</creator><creatorcontrib>Halliwell, George R. ; Goni, Gustavo J. ; Mehari, Michael F. ; Kourafalou, Villy H. ; Baringer, Molly ; Atlas, Robert</creatorcontrib><description>Credible tropical cyclone (TC) intensity prediction by coupled models requires accurate forecasts of enthalpy flux from ocean to atmosphere, which in turn requires accurate forecasts of sea surface temperature cooling beneath storms. Initial ocean fields must accurately represent ocean mesoscale features and the associated thermal and density structure. Observing system simulation experiments (OSSEs) are performed to quantitatively assess the impact of assimilating profiles collected from multiple underwater gliders deployed over the western North Atlantic Ocean TC region, emphasizing advantages gained by profiling from moving versus stationary platforms. Assimilating ocean profiles collected repeatedly at fixed locations produces large root-mean-square error reduction only within ~50 km of each profiler for two primary reasons. First, corrections performed during individual update cycles tend to introduce unphysical eddy structure resulting from smoothing properties of the background error covariance matrix and the tapering of innovations by a localization radius function. Second, advection produces rapid nonlinear error growth at larger distances from profiler locations. The ability of each individual moving glider to cross gradients and map mesoscale structure in its vicinity substantially reduces this nonlinear error growth. Glider arrays can be deployed with horizontal separation distances that are 50%–100% larger than those of fixed-location profilers to achieve similar mesoscale error reduction. By contrast, substantial larger-scale bias reduction in upper-ocean heat content can be achieved by deploying profiler arrays with separation distances up to several hundred kilometers, with moving gliders providing only modest additional improvement. Expected sensitivity of results to study region and data assimilation method is discussed.</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/JTECH-D-18-0195.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Advection ; Arrays ; Atmospheric models ; Bias ; Computer simulation ; Corrections ; Covariance matrix ; Cyclones ; Data assimilation ; Data collection ; Design ; Enthalpy ; Error reduction ; Experiments ; General circulation models ; Gliders ; Heat content ; Hurricanes ; Localization ; Mathematical models ; Mesoscale features ; Mesoscale phenomena ; Ocean circulation ; Ocean models ; Oceans ; Profilers ; Profiles ; Salinity ; Sea surface ; Sea surface temperature ; Separation ; Storms ; Surface temperature ; Tapering ; Temperature requirements ; Tropical climate ; Tropical cyclone intensities ; Tropical cyclones ; Underwater ; Underwater gliders ; Underwater vehicles ; Weather forecasting</subject><ispartof>Journal of atmospheric and oceanic technology, 2020-03, Vol.37 (3), p.467-487</ispartof><rights>Copyright American Meteorological Society Mar 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-c56276e6b4e6db0c6f67f794fd8012370af4260c093d8eddcf04d3954358fa403</citedby><cites>FETCH-LOGICAL-c316t-c56276e6b4e6db0c6f67f794fd8012370af4260c093d8eddcf04d3954358fa403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Halliwell, George R.</creatorcontrib><creatorcontrib>Goni, Gustavo J.</creatorcontrib><creatorcontrib>Mehari, Michael F.</creatorcontrib><creatorcontrib>Kourafalou, Villy H.</creatorcontrib><creatorcontrib>Baringer, Molly</creatorcontrib><creatorcontrib>Atlas, Robert</creatorcontrib><title>OSSE Assessment of Underwater Glider Arrays to Improve Ocean Model Initialization for Tropical Cyclone Prediction</title><title>Journal of atmospheric and oceanic technology</title><description>Credible tropical cyclone (TC) intensity prediction by coupled models requires accurate forecasts of enthalpy flux from ocean to atmosphere, which in turn requires accurate forecasts of sea surface temperature cooling beneath storms. Initial ocean fields must accurately represent ocean mesoscale features and the associated thermal and density structure. Observing system simulation experiments (OSSEs) are performed to quantitatively assess the impact of assimilating profiles collected from multiple underwater gliders deployed over the western North Atlantic Ocean TC region, emphasizing advantages gained by profiling from moving versus stationary platforms. Assimilating ocean profiles collected repeatedly at fixed locations produces large root-mean-square error reduction only within ~50 km of each profiler for two primary reasons. First, corrections performed during individual update cycles tend to introduce unphysical eddy structure resulting from smoothing properties of the background error covariance matrix and the tapering of innovations by a localization radius function. Second, advection produces rapid nonlinear error growth at larger distances from profiler locations. The ability of each individual moving glider to cross gradients and map mesoscale structure in its vicinity substantially reduces this nonlinear error growth. Glider arrays can be deployed with horizontal separation distances that are 50%–100% larger than those of fixed-location profilers to achieve similar mesoscale error reduction. By contrast, substantial larger-scale bias reduction in upper-ocean heat content can be achieved by deploying profiler arrays with separation distances up to several hundred kilometers, with moving gliders providing only modest additional improvement. Expected sensitivity of results to study region and data assimilation method is discussed.</description><subject>Advection</subject><subject>Arrays</subject><subject>Atmospheric models</subject><subject>Bias</subject><subject>Computer simulation</subject><subject>Corrections</subject><subject>Covariance matrix</subject><subject>Cyclones</subject><subject>Data assimilation</subject><subject>Data collection</subject><subject>Design</subject><subject>Enthalpy</subject><subject>Error reduction</subject><subject>Experiments</subject><subject>General circulation models</subject><subject>Gliders</subject><subject>Heat content</subject><subject>Hurricanes</subject><subject>Localization</subject><subject>Mathematical models</subject><subject>Mesoscale features</subject><subject>Mesoscale phenomena</subject><subject>Ocean circulation</subject><subject>Ocean models</subject><subject>Oceans</subject><subject>Profilers</subject><subject>Profiles</subject><subject>Salinity</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Separation</subject><subject>Storms</subject><subject>Surface temperature</subject><subject>Tapering</subject><subject>Temperature requirements</subject><subject>Tropical climate</subject><subject>Tropical cyclone intensities</subject><subject>Tropical cyclones</subject><subject>Underwater</subject><subject>Underwater gliders</subject><subject>Underwater vehicles</subject><subject>Weather forecasting</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNotkE1PAjEQhhujiYj-AG9NPK_ObHfb3SMBRAwGE-DclH4kJcsW2lWDv95FPc0k82bmmYeQe4RHRFE-va6n45dskmGVAdblI16QAZY5ZFDk_JIMQLA6g1Lk1-QmpR0AIEM-IMflajWlo5RsSnvbdjQ4ummNjV-qs5HOGt_3dBSjOiXaBTrfH2L4tHSprWrpWzC2ofPWd141_lt1PrTUhUjXMRy8Vg0dn3QTWkvfozVen-e35MqpJtm7_zokm-fpuodfLGfz8WiR6R6sy3TJc8Et3xaWmy1o7rhwoi6cqQBzJkC5_jPQUDNTWWO0g8KwuixYWTlVABuSh7-9PfDxw6ZO7sJHbPuTMmdVLRgWNfYp_EvpGFKK1slD9HsVTxJBns3KX7NyIrGSZ7MS2Q9Twmzs</recordid><startdate>202003</startdate><enddate>202003</enddate><creator>Halliwell, George R.</creator><creator>Goni, Gustavo J.</creator><creator>Mehari, Michael F.</creator><creator>Kourafalou, Villy H.</creator><creator>Baringer, Molly</creator><creator>Atlas, Robert</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>202003</creationdate><title>OSSE Assessment of Underwater Glider Arrays to Improve Ocean Model Initialization for Tropical Cyclone Prediction</title><author>Halliwell, George R. ; Goni, Gustavo J. ; Mehari, Michael F. ; Kourafalou, Villy H. ; Baringer, Molly ; Atlas, Robert</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-c56276e6b4e6db0c6f67f794fd8012370af4260c093d8eddcf04d3954358fa403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Advection</topic><topic>Arrays</topic><topic>Atmospheric models</topic><topic>Bias</topic><topic>Computer simulation</topic><topic>Corrections</topic><topic>Covariance matrix</topic><topic>Cyclones</topic><topic>Data assimilation</topic><topic>Data collection</topic><topic>Design</topic><topic>Enthalpy</topic><topic>Error reduction</topic><topic>Experiments</topic><topic>General circulation models</topic><topic>Gliders</topic><topic>Heat content</topic><topic>Hurricanes</topic><topic>Localization</topic><topic>Mathematical models</topic><topic>Mesoscale features</topic><topic>Mesoscale phenomena</topic><topic>Ocean circulation</topic><topic>Ocean models</topic><topic>Oceans</topic><topic>Profilers</topic><topic>Profiles</topic><topic>Salinity</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Separation</topic><topic>Storms</topic><topic>Surface temperature</topic><topic>Tapering</topic><topic>Temperature requirements</topic><topic>Tropical climate</topic><topic>Tropical cyclone intensities</topic><topic>Tropical cyclones</topic><topic>Underwater</topic><topic>Underwater gliders</topic><topic>Underwater vehicles</topic><topic>Weather forecasting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Halliwell, George R.</creatorcontrib><creatorcontrib>Goni, Gustavo J.</creatorcontrib><creatorcontrib>Mehari, Michael F.</creatorcontrib><creatorcontrib>Kourafalou, Villy H.</creatorcontrib><creatorcontrib>Baringer, Molly</creatorcontrib><creatorcontrib>Atlas, Robert</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>Science Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of atmospheric and oceanic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Halliwell, George R.</au><au>Goni, Gustavo J.</au><au>Mehari, Michael F.</au><au>Kourafalou, Villy H.</au><au>Baringer, Molly</au><au>Atlas, Robert</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>OSSE Assessment of Underwater Glider Arrays to Improve Ocean Model Initialization for Tropical Cyclone Prediction</atitle><jtitle>Journal of atmospheric and oceanic technology</jtitle><date>2020-03</date><risdate>2020</risdate><volume>37</volume><issue>3</issue><spage>467</spage><epage>487</epage><pages>467-487</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><abstract>Credible tropical cyclone (TC) intensity prediction by coupled models requires accurate forecasts of enthalpy flux from ocean to atmosphere, which in turn requires accurate forecasts of sea surface temperature cooling beneath storms. Initial ocean fields must accurately represent ocean mesoscale features and the associated thermal and density structure. Observing system simulation experiments (OSSEs) are performed to quantitatively assess the impact of assimilating profiles collected from multiple underwater gliders deployed over the western North Atlantic Ocean TC region, emphasizing advantages gained by profiling from moving versus stationary platforms. Assimilating ocean profiles collected repeatedly at fixed locations produces large root-mean-square error reduction only within ~50 km of each profiler for two primary reasons. First, corrections performed during individual update cycles tend to introduce unphysical eddy structure resulting from smoothing properties of the background error covariance matrix and the tapering of innovations by a localization radius function. Second, advection produces rapid nonlinear error growth at larger distances from profiler locations. The ability of each individual moving glider to cross gradients and map mesoscale structure in its vicinity substantially reduces this nonlinear error growth. Glider arrays can be deployed with horizontal separation distances that are 50%–100% larger than those of fixed-location profilers to achieve similar mesoscale error reduction. By contrast, substantial larger-scale bias reduction in upper-ocean heat content can be achieved by deploying profiler arrays with separation distances up to several hundred kilometers, with moving gliders providing only modest additional improvement. Expected sensitivity of results to study region and data assimilation method is discussed.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JTECH-D-18-0195.1</doi><tpages>21</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0739-0572 |
ispartof | Journal of atmospheric and oceanic technology, 2020-03, Vol.37 (3), p.467-487 |
issn | 0739-0572 1520-0426 |
language | eng |
recordid | cdi_proquest_journals_2389731491 |
source | Freely Accessible Journals |
subjects | Advection Arrays Atmospheric models Bias Computer simulation Corrections Covariance matrix Cyclones Data assimilation Data collection Design Enthalpy Error reduction Experiments General circulation models Gliders Heat content Hurricanes Localization Mathematical models Mesoscale features Mesoscale phenomena Ocean circulation Ocean models Oceans Profilers Profiles Salinity Sea surface Sea surface temperature Separation Storms Surface temperature Tapering Temperature requirements Tropical climate Tropical cyclone intensities Tropical cyclones Underwater Underwater gliders Underwater vehicles Weather forecasting |
title | OSSE Assessment of Underwater Glider Arrays to Improve Ocean Model Initialization for Tropical Cyclone Prediction |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=OSSE%20Assessment%20of%20Underwater%20Glider%20Arrays%20to%20Improve%20Ocean%20Model%20Initialization%20for%20Tropical%20Cyclone%20Prediction&rft.jtitle=Journal%20of%20atmospheric%20and%20oceanic%20technology&rft.au=Halliwell,%20George%20R.&rft.date=2020-03&rft.volume=37&rft.issue=3&rft.spage=467&rft.epage=487&rft.pages=467-487&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/JTECH-D-18-0195.1&rft_dat=%3Cproquest_cross%3E2389731491%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-c56276e6b4e6db0c6f67f794fd8012370af4260c093d8eddcf04d3954358fa403%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2389731491&rft_id=info:pmid/&rfr_iscdi=true |