Loading…
An Optimal Estimation Retrieval Algorithm for Microwave Humidity Sounding Channels with Minimal Scan Position Bias
A flexible and physical optimal estimation-based inversion algorithm for retrieving atmospheric water vapor and cloud liquid water path from passive microwave radiometers over the global oceans is presented. The algorithm’s main strength lies in its ability to explicitly account for forward model er...
Saved in:
Published in: | Journal of atmospheric and oceanic technology 2019-03, Vol.36 (3), p.409-425 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c316t-8e149684711ce4aacb9ca6d84a018d2a4f1c1080906d555652ad1699d6afaa43 |
---|---|
cites | cdi_FETCH-LOGICAL-c316t-8e149684711ce4aacb9ca6d84a018d2a4f1c1080906d555652ad1699d6afaa43 |
container_end_page | 425 |
container_issue | 3 |
container_start_page | 409 |
container_title | Journal of atmospheric and oceanic technology |
container_volume | 36 |
creator | Schulte, Richard M. Kummerow, Christian D. |
description | A flexible and physical optimal estimation-based inversion algorithm for retrieving atmospheric water vapor and cloud liquid water path from passive microwave radiometers over the global oceans is presented. The algorithm’s main strength lies in its ability to explicitly account for forward model errors that depend on the Earth incidence angle (EIA) at which a given radiometer measurement is made. Validation of total precipitable water (TPW) retrieved from Microwave Humidity Sounder (MHS) measurements against near-coincident estimates of TPW from SuomiNet GPS ground stations shows that retrieved TPW values agree closely with SuomiNet estimates, and somewhat better than values from the Microwave Integrated Retrieval System that are retrieved from the same MHS instruments. More importantly, it is found that the inclusion of appropriate forward model error assumptions, which are tailored to the EIA and sea surface temperature of the scene being considered, are able to almost entirely eliminate EIA-dependent biases in retrieved TPW. This result holds true across all satellites currently carrying an MHS instrument, despite the fact that only measurements from one satellite are used to estimate forward model errors. The consistency achieved by the retrieval algorithm across all view angles suggests that other inversion algorithms, particularly those for cross-track-scanning radiometers and potential future constellations of small satellites, would benefit from the inclusion of nuanced error assumptions that consider the effect of EIA. |
doi_str_mv | 10.1175/JTECH-D-18-0133.1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2390186287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2390186287</sourcerecordid><originalsourceid>FETCH-LOGICAL-c316t-8e149684711ce4aacb9ca6d84a018d2a4f1c1080906d555652ad1699d6afaa43</originalsourceid><addsrcrecordid>eNotkE1PAjEQhhujiYj-AG9NPC929qPbPSKgaDAY4d6Mu10oWVpsdyH8ewt4mmTy5Jl3XkIegQ0A8uz5YzkZTaNxBCJikCQDuCI9yGIWsTTm16TH8qSIWJbHt-TO-w1jgQLeI25o6HzX6i02dOJPs9XW0G_VOq32YTlsVtbpdr2ltXX0U5fOHnCv6LTb6kq3R7qwnam0WdHRGo1RjaeHgAfSnKWLEg39sl6fvS8a_T25qbHx6uF_9snydbIM6Wfzt_fRcBaVIVkbCQVpwUWaA5QqRSx_ihJ5JVJkIKoY0xpKYIIVjFdZlvEsxgp4UVQca8Q06ZOni3bn7G-nfCs3tnMmXJRxUgQHj0UeKLhQ4S_vnarlzoXc7iiByVOz8tysHEsQ8tSshOQPvRttNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390186287</pqid></control><display><type>article</type><title>An Optimal Estimation Retrieval Algorithm for Microwave Humidity Sounding Channels with Minimal Scan Position Bias</title><source>Freely Accessible Journals</source><creator>Schulte, Richard M. ; Kummerow, Christian D.</creator><creatorcontrib>Schulte, Richard M. ; Kummerow, Christian D.</creatorcontrib><description>A flexible and physical optimal estimation-based inversion algorithm for retrieving atmospheric water vapor and cloud liquid water path from passive microwave radiometers over the global oceans is presented. The algorithm’s main strength lies in its ability to explicitly account for forward model errors that depend on the Earth incidence angle (EIA) at which a given radiometer measurement is made. Validation of total precipitable water (TPW) retrieved from Microwave Humidity Sounder (MHS) measurements against near-coincident estimates of TPW from SuomiNet GPS ground stations shows that retrieved TPW values agree closely with SuomiNet estimates, and somewhat better than values from the Microwave Integrated Retrieval System that are retrieved from the same MHS instruments. More importantly, it is found that the inclusion of appropriate forward model error assumptions, which are tailored to the EIA and sea surface temperature of the scene being considered, are able to almost entirely eliminate EIA-dependent biases in retrieved TPW. This result holds true across all satellites currently carrying an MHS instrument, despite the fact that only measurements from one satellite are used to estimate forward model errors. The consistency achieved by the retrieval algorithm across all view angles suggests that other inversion algorithms, particularly those for cross-track-scanning radiometers and potential future constellations of small satellites, would benefit from the inclusion of nuanced error assumptions that consider the effect of EIA.</description><identifier>ISSN: 0739-0572</identifier><identifier>EISSN: 1520-0426</identifier><identifier>DOI: 10.1175/JTECH-D-18-0133.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Algorithms ; Atmosphere ; Atmospheric water ; Atmospheric water vapor ; Bias ; Climate change ; Clouds ; Errors ; Estimates ; Global positioning systems ; GPS ; Ground stations ; Humidity ; Incidence angle ; Instruments ; Meteorological satellites ; Microwave imagery ; Microwave radiometers ; Oceans ; Precipitable water ; Radiometers ; Retrieval ; Satellite constellations ; Satellite navigation systems ; Satellite tracking ; Satellites ; Sea surface ; Sea surface temperature ; Small satellites ; Surface temperature ; Temperature ; Water ; Water vapor ; Water vapour</subject><ispartof>Journal of atmospheric and oceanic technology, 2019-03, Vol.36 (3), p.409-425</ispartof><rights>Copyright American Meteorological Society Mar 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c316t-8e149684711ce4aacb9ca6d84a018d2a4f1c1080906d555652ad1699d6afaa43</citedby><cites>FETCH-LOGICAL-c316t-8e149684711ce4aacb9ca6d84a018d2a4f1c1080906d555652ad1699d6afaa43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Schulte, Richard M.</creatorcontrib><creatorcontrib>Kummerow, Christian D.</creatorcontrib><title>An Optimal Estimation Retrieval Algorithm for Microwave Humidity Sounding Channels with Minimal Scan Position Bias</title><title>Journal of atmospheric and oceanic technology</title><description>A flexible and physical optimal estimation-based inversion algorithm for retrieving atmospheric water vapor and cloud liquid water path from passive microwave radiometers over the global oceans is presented. The algorithm’s main strength lies in its ability to explicitly account for forward model errors that depend on the Earth incidence angle (EIA) at which a given radiometer measurement is made. Validation of total precipitable water (TPW) retrieved from Microwave Humidity Sounder (MHS) measurements against near-coincident estimates of TPW from SuomiNet GPS ground stations shows that retrieved TPW values agree closely with SuomiNet estimates, and somewhat better than values from the Microwave Integrated Retrieval System that are retrieved from the same MHS instruments. More importantly, it is found that the inclusion of appropriate forward model error assumptions, which are tailored to the EIA and sea surface temperature of the scene being considered, are able to almost entirely eliminate EIA-dependent biases in retrieved TPW. This result holds true across all satellites currently carrying an MHS instrument, despite the fact that only measurements from one satellite are used to estimate forward model errors. The consistency achieved by the retrieval algorithm across all view angles suggests that other inversion algorithms, particularly those for cross-track-scanning radiometers and potential future constellations of small satellites, would benefit from the inclusion of nuanced error assumptions that consider the effect of EIA.</description><subject>Algorithms</subject><subject>Atmosphere</subject><subject>Atmospheric water</subject><subject>Atmospheric water vapor</subject><subject>Bias</subject><subject>Climate change</subject><subject>Clouds</subject><subject>Errors</subject><subject>Estimates</subject><subject>Global positioning systems</subject><subject>GPS</subject><subject>Ground stations</subject><subject>Humidity</subject><subject>Incidence angle</subject><subject>Instruments</subject><subject>Meteorological satellites</subject><subject>Microwave imagery</subject><subject>Microwave radiometers</subject><subject>Oceans</subject><subject>Precipitable water</subject><subject>Radiometers</subject><subject>Retrieval</subject><subject>Satellite constellations</subject><subject>Satellite navigation systems</subject><subject>Satellite tracking</subject><subject>Satellites</subject><subject>Sea surface</subject><subject>Sea surface temperature</subject><subject>Small satellites</subject><subject>Surface temperature</subject><subject>Temperature</subject><subject>Water</subject><subject>Water vapor</subject><subject>Water vapour</subject><issn>0739-0572</issn><issn>1520-0426</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNotkE1PAjEQhhujiYj-AG9NPC929qPbPSKgaDAY4d6Mu10oWVpsdyH8ewt4mmTy5Jl3XkIegQ0A8uz5YzkZTaNxBCJikCQDuCI9yGIWsTTm16TH8qSIWJbHt-TO-w1jgQLeI25o6HzX6i02dOJPs9XW0G_VOq32YTlsVtbpdr2ltXX0U5fOHnCv6LTb6kq3R7qwnam0WdHRGo1RjaeHgAfSnKWLEg39sl6fvS8a_T25qbHx6uF_9snydbIM6Wfzt_fRcBaVIVkbCQVpwUWaA5QqRSx_ihJ5JVJkIKoY0xpKYIIVjFdZlvEsxgp4UVQca8Q06ZOni3bn7G-nfCs3tnMmXJRxUgQHj0UeKLhQ4S_vnarlzoXc7iiByVOz8tysHEsQ8tSshOQPvRttNA</recordid><startdate>201903</startdate><enddate>201903</enddate><creator>Schulte, Richard M.</creator><creator>Kummerow, Christian D.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TG</scope><scope>7TN</scope><scope>7UA</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>L7M</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>201903</creationdate><title>An Optimal Estimation Retrieval Algorithm for Microwave Humidity Sounding Channels with Minimal Scan Position Bias</title><author>Schulte, Richard M. ; Kummerow, Christian D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c316t-8e149684711ce4aacb9ca6d84a018d2a4f1c1080906d555652ad1699d6afaa43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Atmosphere</topic><topic>Atmospheric water</topic><topic>Atmospheric water vapor</topic><topic>Bias</topic><topic>Climate change</topic><topic>Clouds</topic><topic>Errors</topic><topic>Estimates</topic><topic>Global positioning systems</topic><topic>GPS</topic><topic>Ground stations</topic><topic>Humidity</topic><topic>Incidence angle</topic><topic>Instruments</topic><topic>Meteorological satellites</topic><topic>Microwave imagery</topic><topic>Microwave radiometers</topic><topic>Oceans</topic><topic>Precipitable water</topic><topic>Radiometers</topic><topic>Retrieval</topic><topic>Satellite constellations</topic><topic>Satellite navigation systems</topic><topic>Satellite tracking</topic><topic>Satellites</topic><topic>Sea surface</topic><topic>Sea surface temperature</topic><topic>Small satellites</topic><topic>Surface temperature</topic><topic>Temperature</topic><topic>Water</topic><topic>Water vapor</topic><topic>Water vapour</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schulte, Richard M.</creatorcontrib><creatorcontrib>Kummerow, Christian D.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Military Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest_Research Library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of atmospheric and oceanic technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schulte, Richard M.</au><au>Kummerow, Christian D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Optimal Estimation Retrieval Algorithm for Microwave Humidity Sounding Channels with Minimal Scan Position Bias</atitle><jtitle>Journal of atmospheric and oceanic technology</jtitle><date>2019-03</date><risdate>2019</risdate><volume>36</volume><issue>3</issue><spage>409</spage><epage>425</epage><pages>409-425</pages><issn>0739-0572</issn><eissn>1520-0426</eissn><abstract>A flexible and physical optimal estimation-based inversion algorithm for retrieving atmospheric water vapor and cloud liquid water path from passive microwave radiometers over the global oceans is presented. The algorithm’s main strength lies in its ability to explicitly account for forward model errors that depend on the Earth incidence angle (EIA) at which a given radiometer measurement is made. Validation of total precipitable water (TPW) retrieved from Microwave Humidity Sounder (MHS) measurements against near-coincident estimates of TPW from SuomiNet GPS ground stations shows that retrieved TPW values agree closely with SuomiNet estimates, and somewhat better than values from the Microwave Integrated Retrieval System that are retrieved from the same MHS instruments. More importantly, it is found that the inclusion of appropriate forward model error assumptions, which are tailored to the EIA and sea surface temperature of the scene being considered, are able to almost entirely eliminate EIA-dependent biases in retrieved TPW. This result holds true across all satellites currently carrying an MHS instrument, despite the fact that only measurements from one satellite are used to estimate forward model errors. The consistency achieved by the retrieval algorithm across all view angles suggests that other inversion algorithms, particularly those for cross-track-scanning radiometers and potential future constellations of small satellites, would benefit from the inclusion of nuanced error assumptions that consider the effect of EIA.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JTECH-D-18-0133.1</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0739-0572 |
ispartof | Journal of atmospheric and oceanic technology, 2019-03, Vol.36 (3), p.409-425 |
issn | 0739-0572 1520-0426 |
language | eng |
recordid | cdi_proquest_journals_2390186287 |
source | Freely Accessible Journals |
subjects | Algorithms Atmosphere Atmospheric water Atmospheric water vapor Bias Climate change Clouds Errors Estimates Global positioning systems GPS Ground stations Humidity Incidence angle Instruments Meteorological satellites Microwave imagery Microwave radiometers Oceans Precipitable water Radiometers Retrieval Satellite constellations Satellite navigation systems Satellite tracking Satellites Sea surface Sea surface temperature Small satellites Surface temperature Temperature Water Water vapor Water vapour |
title | An Optimal Estimation Retrieval Algorithm for Microwave Humidity Sounding Channels with Minimal Scan Position Bias |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T10%3A20%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Optimal%20Estimation%20Retrieval%20Algorithm%20for%20Microwave%20Humidity%20Sounding%20Channels%20with%20Minimal%20Scan%20Position%20Bias&rft.jtitle=Journal%20of%20atmospheric%20and%20oceanic%20technology&rft.au=Schulte,%20Richard%20M.&rft.date=2019-03&rft.volume=36&rft.issue=3&rft.spage=409&rft.epage=425&rft.pages=409-425&rft.issn=0739-0572&rft.eissn=1520-0426&rft_id=info:doi/10.1175/JTECH-D-18-0133.1&rft_dat=%3Cproquest_cross%3E2390186287%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c316t-8e149684711ce4aacb9ca6d84a018d2a4f1c1080906d555652ad1699d6afaa43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2390186287&rft_id=info:pmid/&rfr_iscdi=true |