Loading…
Long-Term Deformation Properties of a Carbon-Fiber-Reinforced Alkali-Activated Cement Composite
The aim of this study was to experimentally determine the creep and shrinkage properties of plain geopolymer and carbon-fiber-reinforced geopolymer concretes. The creep properties of concrete specimens were determined by loading them by 20% of their ultimate stress. The specific creep of the geopoly...
Saved in:
Published in: | Mechanics of composite materials 2020-03, Vol.56 (1), p.85-92 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c392t-5ccfcdc6372d87ab337cffc1da2be57376e2ba91be97100a086fb6140385e9ef3 |
---|---|
cites | cdi_FETCH-LOGICAL-c392t-5ccfcdc6372d87ab337cffc1da2be57376e2ba91be97100a086fb6140385e9ef3 |
container_end_page | 92 |
container_issue | 1 |
container_start_page | 85 |
container_title | Mechanics of composite materials |
container_volume | 56 |
creator | Gailitis, R. Sliseris, J. Korniejenko, K. Mikuła, J. Łach, M. Pakrastins, L. Sprince, A. |
description | The aim of this study was to experimentally determine the creep and shrinkage properties of plain geopolymer and carbon-fiber-reinforced geopolymer concretes. The creep properties of concrete specimens were determined by loading them by 20% of their ultimate stress. The specific creep of the geopolymer concrete was in the same range as that of the ordinary Portland cement — 0.00065 1/MPa. New information on the time-dependent elastic modulus of the concretes was also obtained. The elastic modulus of the plain geopolymer concrete reached, on the average, 32.03 GPa on day 30, 36.29 GPa on day 62, and 45.73 GPa on day 158, but that of the carbon-fiber-reinforced one — 30.12 GPa on day 30, 37.79 GPa on day 62, and 53.35 GPa on day 158 after the production of their specimens. |
doi_str_mv | 10.1007/s11029-020-09862-w |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2390186430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A621033501</galeid><sourcerecordid>A621033501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-5ccfcdc6372d87ab337cffc1da2be57376e2ba91be97100a086fb6140385e9ef3</originalsourceid><addsrcrecordid>eNp9kcFq3DAQhkVJoJukL9CToacetB1JsWwdFydpAgsN2_QsZHm0KF1bW0mbpG8fJS6EXIoOA8P3jWb4CfnMYMkAmm-JMeCKAgcKqpWcPn4gC1Y3graK8yOyAKYYraWsP5KTlO4BigZyQfQ6TFt6h3GsLtCFOJrsw1TdxrDHmD2mKrjKVJ2JfZjole8x0g36qaAWh2q1-212nq5s9g8ml0aHI0656sK4D8lnPCPHzuwSfvpXT8mvq8u77pquf3y_6VZraoXimdbWOjtYKRo-tI3phWisc5YNhvdYzmgk8t4o1qNqyuYGWul6yc5BtDUqdOKUfJnn7mP4c8CU9X04xKl8qblQwFp5LqBQy5namh3qlytyNLa8AUdvw4TOl_5KcgZC1MCK8PWdUJiMT3lrDinpm5-b9yyfWRtDShGd3kc_mvhXM9AvKek5JV1S0q8p6cciiVlKBZ62GN_2_o_1DP2blMY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390186430</pqid></control><display><type>article</type><title>Long-Term Deformation Properties of a Carbon-Fiber-Reinforced Alkali-Activated Cement Composite</title><source>Springer Link</source><creator>Gailitis, R. ; Sliseris, J. ; Korniejenko, K. ; Mikuła, J. ; Łach, M. ; Pakrastins, L. ; Sprince, A.</creator><creatorcontrib>Gailitis, R. ; Sliseris, J. ; Korniejenko, K. ; Mikuła, J. ; Łach, M. ; Pakrastins, L. ; Sprince, A.</creatorcontrib><description>The aim of this study was to experimentally determine the creep and shrinkage properties of plain geopolymer and carbon-fiber-reinforced geopolymer concretes. The creep properties of concrete specimens were determined by loading them by 20% of their ultimate stress. The specific creep of the geopolymer concrete was in the same range as that of the ordinary Portland cement — 0.00065 1/MPa. New information on the time-dependent elastic modulus of the concretes was also obtained. The elastic modulus of the plain geopolymer concrete reached, on the average, 32.03 GPa on day 30, 36.29 GPa on day 62, and 45.73 GPa on day 158, but that of the carbon-fiber-reinforced one — 30.12 GPa on day 30, 37.79 GPa on day 62, and 53.35 GPa on day 158 after the production of their specimens.</description><identifier>ISSN: 0191-5665</identifier><identifier>EISSN: 1573-8922</identifier><identifier>DOI: 10.1007/s11029-020-09862-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Activated carbon ; Analysis ; Carbon ; Carbon fiber reinforced concretes ; Cement ; Cement reinforcements ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Composite materials ; Composites ; Concrete ; Creep (materials) ; Fiber composites ; Glass ; Materials Science ; Modulus of elasticity ; Natural Materials ; Portland cements ; Properties (attributes) ; Solid Mechanics ; Tensile stress ; Time dependence</subject><ispartof>Mechanics of composite materials, 2020-03, Vol.56 (1), p.85-92</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-5ccfcdc6372d87ab337cffc1da2be57376e2ba91be97100a086fb6140385e9ef3</citedby><cites>FETCH-LOGICAL-c392t-5ccfcdc6372d87ab337cffc1da2be57376e2ba91be97100a086fb6140385e9ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Gailitis, R.</creatorcontrib><creatorcontrib>Sliseris, J.</creatorcontrib><creatorcontrib>Korniejenko, K.</creatorcontrib><creatorcontrib>Mikuła, J.</creatorcontrib><creatorcontrib>Łach, M.</creatorcontrib><creatorcontrib>Pakrastins, L.</creatorcontrib><creatorcontrib>Sprince, A.</creatorcontrib><title>Long-Term Deformation Properties of a Carbon-Fiber-Reinforced Alkali-Activated Cement Composite</title><title>Mechanics of composite materials</title><addtitle>Mech Compos Mater</addtitle><description>The aim of this study was to experimentally determine the creep and shrinkage properties of plain geopolymer and carbon-fiber-reinforced geopolymer concretes. The creep properties of concrete specimens were determined by loading them by 20% of their ultimate stress. The specific creep of the geopolymer concrete was in the same range as that of the ordinary Portland cement — 0.00065 1/MPa. New information on the time-dependent elastic modulus of the concretes was also obtained. The elastic modulus of the plain geopolymer concrete reached, on the average, 32.03 GPa on day 30, 36.29 GPa on day 62, and 45.73 GPa on day 158, but that of the carbon-fiber-reinforced one — 30.12 GPa on day 30, 37.79 GPa on day 62, and 53.35 GPa on day 158 after the production of their specimens.</description><subject>Activated carbon</subject><subject>Analysis</subject><subject>Carbon</subject><subject>Carbon fiber reinforced concretes</subject><subject>Cement</subject><subject>Cement reinforcements</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Composite materials</subject><subject>Composites</subject><subject>Concrete</subject><subject>Creep (materials)</subject><subject>Fiber composites</subject><subject>Glass</subject><subject>Materials Science</subject><subject>Modulus of elasticity</subject><subject>Natural Materials</subject><subject>Portland cements</subject><subject>Properties (attributes)</subject><subject>Solid Mechanics</subject><subject>Tensile stress</subject><subject>Time dependence</subject><issn>0191-5665</issn><issn>1573-8922</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kcFq3DAQhkVJoJukL9CToacetB1JsWwdFydpAgsN2_QsZHm0KF1bW0mbpG8fJS6EXIoOA8P3jWb4CfnMYMkAmm-JMeCKAgcKqpWcPn4gC1Y3graK8yOyAKYYraWsP5KTlO4BigZyQfQ6TFt6h3GsLtCFOJrsw1TdxrDHmD2mKrjKVJ2JfZjole8x0g36qaAWh2q1-212nq5s9g8ml0aHI0656sK4D8lnPCPHzuwSfvpXT8mvq8u77pquf3y_6VZraoXimdbWOjtYKRo-tI3phWisc5YNhvdYzmgk8t4o1qNqyuYGWul6yc5BtDUqdOKUfJnn7mP4c8CU9X04xKl8qblQwFp5LqBQy5namh3qlytyNLa8AUdvw4TOl_5KcgZC1MCK8PWdUJiMT3lrDinpm5-b9yyfWRtDShGd3kc_mvhXM9AvKek5JV1S0q8p6cciiVlKBZ62GN_2_o_1DP2blMY</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Gailitis, R.</creator><creator>Sliseris, J.</creator><creator>Korniejenko, K.</creator><creator>Mikuła, J.</creator><creator>Łach, M.</creator><creator>Pakrastins, L.</creator><creator>Sprince, A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20200301</creationdate><title>Long-Term Deformation Properties of a Carbon-Fiber-Reinforced Alkali-Activated Cement Composite</title><author>Gailitis, R. ; Sliseris, J. ; Korniejenko, K. ; Mikuła, J. ; Łach, M. ; Pakrastins, L. ; Sprince, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-5ccfcdc6372d87ab337cffc1da2be57376e2ba91be97100a086fb6140385e9ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activated carbon</topic><topic>Analysis</topic><topic>Carbon</topic><topic>Carbon fiber reinforced concretes</topic><topic>Cement</topic><topic>Cement reinforcements</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Composite materials</topic><topic>Composites</topic><topic>Concrete</topic><topic>Creep (materials)</topic><topic>Fiber composites</topic><topic>Glass</topic><topic>Materials Science</topic><topic>Modulus of elasticity</topic><topic>Natural Materials</topic><topic>Portland cements</topic><topic>Properties (attributes)</topic><topic>Solid Mechanics</topic><topic>Tensile stress</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gailitis, R.</creatorcontrib><creatorcontrib>Sliseris, J.</creatorcontrib><creatorcontrib>Korniejenko, K.</creatorcontrib><creatorcontrib>Mikuła, J.</creatorcontrib><creatorcontrib>Łach, M.</creatorcontrib><creatorcontrib>Pakrastins, L.</creatorcontrib><creatorcontrib>Sprince, A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Mechanics of composite materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gailitis, R.</au><au>Sliseris, J.</au><au>Korniejenko, K.</au><au>Mikuła, J.</au><au>Łach, M.</au><au>Pakrastins, L.</au><au>Sprince, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-Term Deformation Properties of a Carbon-Fiber-Reinforced Alkali-Activated Cement Composite</atitle><jtitle>Mechanics of composite materials</jtitle><stitle>Mech Compos Mater</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>56</volume><issue>1</issue><spage>85</spage><epage>92</epage><pages>85-92</pages><issn>0191-5665</issn><eissn>1573-8922</eissn><abstract>The aim of this study was to experimentally determine the creep and shrinkage properties of plain geopolymer and carbon-fiber-reinforced geopolymer concretes. The creep properties of concrete specimens were determined by loading them by 20% of their ultimate stress. The specific creep of the geopolymer concrete was in the same range as that of the ordinary Portland cement — 0.00065 1/MPa. New information on the time-dependent elastic modulus of the concretes was also obtained. The elastic modulus of the plain geopolymer concrete reached, on the average, 32.03 GPa on day 30, 36.29 GPa on day 62, and 45.73 GPa on day 158, but that of the carbon-fiber-reinforced one — 30.12 GPa on day 30, 37.79 GPa on day 62, and 53.35 GPa on day 158 after the production of their specimens.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11029-020-09862-w</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0191-5665 |
ispartof | Mechanics of composite materials, 2020-03, Vol.56 (1), p.85-92 |
issn | 0191-5665 1573-8922 |
language | eng |
recordid | cdi_proquest_journals_2390186430 |
source | Springer Link |
subjects | Activated carbon Analysis Carbon Carbon fiber reinforced concretes Cement Cement reinforcements Ceramics Characterization and Evaluation of Materials Chemistry and Materials Science Classical Mechanics Composite materials Composites Concrete Creep (materials) Fiber composites Glass Materials Science Modulus of elasticity Natural Materials Portland cements Properties (attributes) Solid Mechanics Tensile stress Time dependence |
title | Long-Term Deformation Properties of a Carbon-Fiber-Reinforced Alkali-Activated Cement Composite |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A34%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-Term%20Deformation%20Properties%20of%20a%20Carbon-Fiber-Reinforced%20Alkali-Activated%20Cement%20Composite&rft.jtitle=Mechanics%20of%20composite%20materials&rft.au=Gailitis,%20R.&rft.date=2020-03-01&rft.volume=56&rft.issue=1&rft.spage=85&rft.epage=92&rft.pages=85-92&rft.issn=0191-5665&rft.eissn=1573-8922&rft_id=info:doi/10.1007/s11029-020-09862-w&rft_dat=%3Cgale_proqu%3EA621033501%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-5ccfcdc6372d87ab337cffc1da2be57376e2ba91be97100a086fb6140385e9ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2390186430&rft_id=info:pmid/&rft_galeid=A621033501&rfr_iscdi=true |