Loading…

Long-Term Deformation Properties of a Carbon-Fiber-Reinforced Alkali-Activated Cement Composite

The aim of this study was to experimentally determine the creep and shrinkage properties of plain geopolymer and carbon-fiber-reinforced geopolymer concretes. The creep properties of concrete specimens were determined by loading them by 20% of their ultimate stress. The specific creep of the geopoly...

Full description

Saved in:
Bibliographic Details
Published in:Mechanics of composite materials 2020-03, Vol.56 (1), p.85-92
Main Authors: Gailitis, R., Sliseris, J., Korniejenko, K., Mikuła, J., Łach, M., Pakrastins, L., Sprince, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c392t-5ccfcdc6372d87ab337cffc1da2be57376e2ba91be97100a086fb6140385e9ef3
cites cdi_FETCH-LOGICAL-c392t-5ccfcdc6372d87ab337cffc1da2be57376e2ba91be97100a086fb6140385e9ef3
container_end_page 92
container_issue 1
container_start_page 85
container_title Mechanics of composite materials
container_volume 56
creator Gailitis, R.
Sliseris, J.
Korniejenko, K.
Mikuła, J.
Łach, M.
Pakrastins, L.
Sprince, A.
description The aim of this study was to experimentally determine the creep and shrinkage properties of plain geopolymer and carbon-fiber-reinforced geopolymer concretes. The creep properties of concrete specimens were determined by loading them by 20% of their ultimate stress. The specific creep of the geopolymer concrete was in the same range as that of the ordinary Portland cement — 0.00065 1/MPa. New information on the time-dependent elastic modulus of the concretes was also obtained. The elastic modulus of the plain geopolymer concrete reached, on the average, 32.03 GPa on day 30, 36.29 GPa on day 62, and 45.73 GPa on day 158, but that of the carbon-fiber-reinforced one — 30.12 GPa on day 30, 37.79 GPa on day 62, and 53.35 GPa on day 158 after the production of their specimens.
doi_str_mv 10.1007/s11029-020-09862-w
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2390186430</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A621033501</galeid><sourcerecordid>A621033501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c392t-5ccfcdc6372d87ab337cffc1da2be57376e2ba91be97100a086fb6140385e9ef3</originalsourceid><addsrcrecordid>eNp9kcFq3DAQhkVJoJukL9CToacetB1JsWwdFydpAgsN2_QsZHm0KF1bW0mbpG8fJS6EXIoOA8P3jWb4CfnMYMkAmm-JMeCKAgcKqpWcPn4gC1Y3graK8yOyAKYYraWsP5KTlO4BigZyQfQ6TFt6h3GsLtCFOJrsw1TdxrDHmD2mKrjKVJ2JfZjole8x0g36qaAWh2q1-212nq5s9g8ml0aHI0656sK4D8lnPCPHzuwSfvpXT8mvq8u77pquf3y_6VZraoXimdbWOjtYKRo-tI3phWisc5YNhvdYzmgk8t4o1qNqyuYGWul6yc5BtDUqdOKUfJnn7mP4c8CU9X04xKl8qblQwFp5LqBQy5namh3qlytyNLa8AUdvw4TOl_5KcgZC1MCK8PWdUJiMT3lrDinpm5-b9yyfWRtDShGd3kc_mvhXM9AvKek5JV1S0q8p6cciiVlKBZ62GN_2_o_1DP2blMY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390186430</pqid></control><display><type>article</type><title>Long-Term Deformation Properties of a Carbon-Fiber-Reinforced Alkali-Activated Cement Composite</title><source>Springer Link</source><creator>Gailitis, R. ; Sliseris, J. ; Korniejenko, K. ; Mikuła, J. ; Łach, M. ; Pakrastins, L. ; Sprince, A.</creator><creatorcontrib>Gailitis, R. ; Sliseris, J. ; Korniejenko, K. ; Mikuła, J. ; Łach, M. ; Pakrastins, L. ; Sprince, A.</creatorcontrib><description>The aim of this study was to experimentally determine the creep and shrinkage properties of plain geopolymer and carbon-fiber-reinforced geopolymer concretes. The creep properties of concrete specimens were determined by loading them by 20% of their ultimate stress. The specific creep of the geopolymer concrete was in the same range as that of the ordinary Portland cement — 0.00065 1/MPa. New information on the time-dependent elastic modulus of the concretes was also obtained. The elastic modulus of the plain geopolymer concrete reached, on the average, 32.03 GPa on day 30, 36.29 GPa on day 62, and 45.73 GPa on day 158, but that of the carbon-fiber-reinforced one — 30.12 GPa on day 30, 37.79 GPa on day 62, and 53.35 GPa on day 158 after the production of their specimens.</description><identifier>ISSN: 0191-5665</identifier><identifier>EISSN: 1573-8922</identifier><identifier>DOI: 10.1007/s11029-020-09862-w</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Activated carbon ; Analysis ; Carbon ; Carbon fiber reinforced concretes ; Cement ; Cement reinforcements ; Ceramics ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Classical Mechanics ; Composite materials ; Composites ; Concrete ; Creep (materials) ; Fiber composites ; Glass ; Materials Science ; Modulus of elasticity ; Natural Materials ; Portland cements ; Properties (attributes) ; Solid Mechanics ; Tensile stress ; Time dependence</subject><ispartof>Mechanics of composite materials, 2020-03, Vol.56 (1), p.85-92</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020</rights><rights>COPYRIGHT 2020 Springer</rights><rights>Springer Science+Business Media, LLC, part of Springer Nature 2020.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c392t-5ccfcdc6372d87ab337cffc1da2be57376e2ba91be97100a086fb6140385e9ef3</citedby><cites>FETCH-LOGICAL-c392t-5ccfcdc6372d87ab337cffc1da2be57376e2ba91be97100a086fb6140385e9ef3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids></links><search><creatorcontrib>Gailitis, R.</creatorcontrib><creatorcontrib>Sliseris, J.</creatorcontrib><creatorcontrib>Korniejenko, K.</creatorcontrib><creatorcontrib>Mikuła, J.</creatorcontrib><creatorcontrib>Łach, M.</creatorcontrib><creatorcontrib>Pakrastins, L.</creatorcontrib><creatorcontrib>Sprince, A.</creatorcontrib><title>Long-Term Deformation Properties of a Carbon-Fiber-Reinforced Alkali-Activated Cement Composite</title><title>Mechanics of composite materials</title><addtitle>Mech Compos Mater</addtitle><description>The aim of this study was to experimentally determine the creep and shrinkage properties of plain geopolymer and carbon-fiber-reinforced geopolymer concretes. The creep properties of concrete specimens were determined by loading them by 20% of their ultimate stress. The specific creep of the geopolymer concrete was in the same range as that of the ordinary Portland cement — 0.00065 1/MPa. New information on the time-dependent elastic modulus of the concretes was also obtained. The elastic modulus of the plain geopolymer concrete reached, on the average, 32.03 GPa on day 30, 36.29 GPa on day 62, and 45.73 GPa on day 158, but that of the carbon-fiber-reinforced one — 30.12 GPa on day 30, 37.79 GPa on day 62, and 53.35 GPa on day 158 after the production of their specimens.</description><subject>Activated carbon</subject><subject>Analysis</subject><subject>Carbon</subject><subject>Carbon fiber reinforced concretes</subject><subject>Cement</subject><subject>Cement reinforcements</subject><subject>Ceramics</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Classical Mechanics</subject><subject>Composite materials</subject><subject>Composites</subject><subject>Concrete</subject><subject>Creep (materials)</subject><subject>Fiber composites</subject><subject>Glass</subject><subject>Materials Science</subject><subject>Modulus of elasticity</subject><subject>Natural Materials</subject><subject>Portland cements</subject><subject>Properties (attributes)</subject><subject>Solid Mechanics</subject><subject>Tensile stress</subject><subject>Time dependence</subject><issn>0191-5665</issn><issn>1573-8922</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kcFq3DAQhkVJoJukL9CToacetB1JsWwdFydpAgsN2_QsZHm0KF1bW0mbpG8fJS6EXIoOA8P3jWb4CfnMYMkAmm-JMeCKAgcKqpWcPn4gC1Y3graK8yOyAKYYraWsP5KTlO4BigZyQfQ6TFt6h3GsLtCFOJrsw1TdxrDHmD2mKrjKVJ2JfZjole8x0g36qaAWh2q1-212nq5s9g8ml0aHI0656sK4D8lnPCPHzuwSfvpXT8mvq8u77pquf3y_6VZraoXimdbWOjtYKRo-tI3phWisc5YNhvdYzmgk8t4o1qNqyuYGWul6yc5BtDUqdOKUfJnn7mP4c8CU9X04xKl8qblQwFp5LqBQy5namh3qlytyNLa8AUdvw4TOl_5KcgZC1MCK8PWdUJiMT3lrDinpm5-b9yyfWRtDShGd3kc_mvhXM9AvKek5JV1S0q8p6cciiVlKBZ62GN_2_o_1DP2blMY</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Gailitis, R.</creator><creator>Sliseris, J.</creator><creator>Korniejenko, K.</creator><creator>Mikuła, J.</creator><creator>Łach, M.</creator><creator>Pakrastins, L.</creator><creator>Sprince, A.</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope></search><sort><creationdate>20200301</creationdate><title>Long-Term Deformation Properties of a Carbon-Fiber-Reinforced Alkali-Activated Cement Composite</title><author>Gailitis, R. ; Sliseris, J. ; Korniejenko, K. ; Mikuła, J. ; Łach, M. ; Pakrastins, L. ; Sprince, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c392t-5ccfcdc6372d87ab337cffc1da2be57376e2ba91be97100a086fb6140385e9ef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Activated carbon</topic><topic>Analysis</topic><topic>Carbon</topic><topic>Carbon fiber reinforced concretes</topic><topic>Cement</topic><topic>Cement reinforcements</topic><topic>Ceramics</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Classical Mechanics</topic><topic>Composite materials</topic><topic>Composites</topic><topic>Concrete</topic><topic>Creep (materials)</topic><topic>Fiber composites</topic><topic>Glass</topic><topic>Materials Science</topic><topic>Modulus of elasticity</topic><topic>Natural Materials</topic><topic>Portland cements</topic><topic>Properties (attributes)</topic><topic>Solid Mechanics</topic><topic>Tensile stress</topic><topic>Time dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gailitis, R.</creatorcontrib><creatorcontrib>Sliseris, J.</creatorcontrib><creatorcontrib>Korniejenko, K.</creatorcontrib><creatorcontrib>Mikuła, J.</creatorcontrib><creatorcontrib>Łach, M.</creatorcontrib><creatorcontrib>Pakrastins, L.</creatorcontrib><creatorcontrib>Sprince, A.</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><jtitle>Mechanics of composite materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gailitis, R.</au><au>Sliseris, J.</au><au>Korniejenko, K.</au><au>Mikuła, J.</au><au>Łach, M.</au><au>Pakrastins, L.</au><au>Sprince, A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long-Term Deformation Properties of a Carbon-Fiber-Reinforced Alkali-Activated Cement Composite</atitle><jtitle>Mechanics of composite materials</jtitle><stitle>Mech Compos Mater</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>56</volume><issue>1</issue><spage>85</spage><epage>92</epage><pages>85-92</pages><issn>0191-5665</issn><eissn>1573-8922</eissn><abstract>The aim of this study was to experimentally determine the creep and shrinkage properties of plain geopolymer and carbon-fiber-reinforced geopolymer concretes. The creep properties of concrete specimens were determined by loading them by 20% of their ultimate stress. The specific creep of the geopolymer concrete was in the same range as that of the ordinary Portland cement — 0.00065 1/MPa. New information on the time-dependent elastic modulus of the concretes was also obtained. The elastic modulus of the plain geopolymer concrete reached, on the average, 32.03 GPa on day 30, 36.29 GPa on day 62, and 45.73 GPa on day 158, but that of the carbon-fiber-reinforced one — 30.12 GPa on day 30, 37.79 GPa on day 62, and 53.35 GPa on day 158 after the production of their specimens.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11029-020-09862-w</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0191-5665
ispartof Mechanics of composite materials, 2020-03, Vol.56 (1), p.85-92
issn 0191-5665
1573-8922
language eng
recordid cdi_proquest_journals_2390186430
source Springer Link
subjects Activated carbon
Analysis
Carbon
Carbon fiber reinforced concretes
Cement
Cement reinforcements
Ceramics
Characterization and Evaluation of Materials
Chemistry and Materials Science
Classical Mechanics
Composite materials
Composites
Concrete
Creep (materials)
Fiber composites
Glass
Materials Science
Modulus of elasticity
Natural Materials
Portland cements
Properties (attributes)
Solid Mechanics
Tensile stress
Time dependence
title Long-Term Deformation Properties of a Carbon-Fiber-Reinforced Alkali-Activated Cement Composite
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T14%3A34%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long-Term%20Deformation%20Properties%20of%20a%20Carbon-Fiber-Reinforced%20Alkali-Activated%20Cement%20Composite&rft.jtitle=Mechanics%20of%20composite%20materials&rft.au=Gailitis,%20R.&rft.date=2020-03-01&rft.volume=56&rft.issue=1&rft.spage=85&rft.epage=92&rft.pages=85-92&rft.issn=0191-5665&rft.eissn=1573-8922&rft_id=info:doi/10.1007/s11029-020-09862-w&rft_dat=%3Cgale_proqu%3EA621033501%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c392t-5ccfcdc6372d87ab337cffc1da2be57376e2ba91be97100a086fb6140385e9ef3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2390186430&rft_id=info:pmid/&rft_galeid=A621033501&rfr_iscdi=true