Loading…

Mitogenomic phylogeny of the Naticidae (Gastropoda: Littorinimorpha) reveals monophyly of the Polinicinae

The Naticidae is a species‐rich family of predatory marine gastropods with substantial interspecific morphological diversity. The classification of the Naticidae has been traditionally based on morphology data, but the phylogenetic relationships within the family are debated due to conflicting molec...

Full description

Saved in:
Bibliographic Details
Published in:Zoologica scripta 2020-05, Vol.49 (3), p.295-306
Main Authors: Liu, Hongyue, Yang, Yi, Sun, Shao'e, Kong, Lingfeng, Li, Qi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Naticidae is a species‐rich family of predatory marine gastropods with substantial interspecific morphological diversity. The classification of the Naticidae has been traditionally based on morphology data, but the phylogenetic relationships within the family are debated due to conflicting molecular results, especially regarding the monophyly of subfamilies Polinicinae and Naticinae. To further resolve the phylogenetic controversies within the Naticidae, we undertake a phylogenetic approach using 14 newly sequenced complete or nearly complete (only lacking a control region) mitochondrial genomes. Both the maximum likelihood and Bayesian inference analyses supported monophyly of the Polinicinae, but paraphyly of the Naticinae due to the placement of the enigmatic genus Notocochlis. The ancestral character reconstruction suggests that the operculum, a character that currently defines the two subfamilies, evolved from an ancestor with a calcareous operculum in the evolutionary history of naticids. In addition, the chronogram estimates that naticids was originated in late Triassic (about 227 million years ago), consistent with previous hypotheses. Our study highlights the importance of using complete mitochondrial genomes while reconstructing phylogenetic relationships within the Naticidae. The evolution scenario of the naticid operculum contributes new insights into the classification of Naticidae.
ISSN:0300-3256
1463-6409
DOI:10.1111/zsc.12412