Loading…

The transmembrane protein MaSho1 negatively regulates conidial yield by shifting the conidiation pattern in Metarhizium acridum

Sho1 is an important membrane sensor upstream of the HOG-MAPK signaling pathway, which plays critical roles in osmotic pressure response, growth, and virulence in fungi. Here, a Sho1 homolog (MaSho1), containing four transmembrane domains and one Src homology (SH3) domain, was characterized in Metar...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology 2020-05, Vol.104 (9), p.4005-4015
Main Authors: Zhao, Tingting, Wen, Zhiqiong, Xia, Yuxian, Jin, Kai
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Sho1 is an important membrane sensor upstream of the HOG-MAPK signaling pathway, which plays critical roles in osmotic pressure response, growth, and virulence in fungi. Here, a Sho1 homolog (MaSho1), containing four transmembrane domains and one Src homology (SH3) domain, was characterized in Metarhizium acridum , a fungal pathogen of locusts. Targeted gene disruption of MaSho1 impaired cell wall integrity, virulence, and tolerances to UV-B and oxidative stresses, while none of them was affected when the SH3 domain was deleted. Intriguingly, disruption of MaSho1 significantly increased conidial yield, which was not affected in the SH3 domain mutant. Furthermore, it was found that deletion of MaSho1 led to microcycle conidiation of M. acridum on the normal conidiation medium. Deletion of MaSho1 significantly shortened the hyphal cells but had no effect on conidial germination. Digital gene expression profiling during conidiation indicated that differential expression of genes was associated with mycelial development, cell division, and differentiation between the wild type and the MaSho1 mutant. These data suggested that disruption of MaSho1 shifted the conidiation pattern by altering the transcription of genes to inhibit mycelial growth, thereby promoting the conidiation of M. acridum .
ISSN:0175-7598
1432-0614
DOI:10.1007/s00253-020-10523-0