Loading…
Study of matrix–filler interaction through correlations between structural and viscoelastic properties of carbonous‐filler/polymer‐matrix composites
ABSTRACT Polymer matrix composites reinforced with carbonous fillers are of significant commercial importance thanks to their vast application base. As the performance of such composites largely depends on matrix–filler interaction, the present study is focused on the impact of surface chemical stat...
Saved in:
Published in: | Journal of applied polymer science 2020-07, Vol.137 (27), p.n/a |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | ABSTRACT
Polymer matrix composites reinforced with carbonous fillers are of significant commercial importance thanks to their vast application base. As the performance of such composites largely depends on matrix–filler interaction, the present study is focused on the impact of surface chemical states of polymer matrix and carbonous filler on the viscoelastic performance of the composites. Here we report investigation of the filler–matrix interface through spectroscopic techniques such as X‐ray photoelectron spectroscopy (XPS) and Raman spectroscopy. Viscoelastic properties of various polymer matrix composites prepared by varying the filler volume fraction and/or the matrix/filler type have been studied through dynamic mechanical thermal analysis. Further, to understand the matrix–filler interaction, correlations between viscoelastic parameters and various structural parameters such as the surface area of filler and the surface chemical states of filler/matrix obtained through XPS have been studied. Strong correlations between the viscoelastic parameters and the matrix/filler surface chemical states have been observed, suggesting the XPS as an important tool to study the role of the surface functionalities present on the matrix/filler surface to define the matrix–filler interaction. The filler surface functionalities such as C bound O have been found more compatible with the polymers having aromatic ring in the repeat unit. © 2020 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019, 137, 48660. |
---|---|
ISSN: | 0021-8995 1097-4628 |
DOI: | 10.1002/app.48660 |