Loading…
Emerging investigator series: synthesis of magnesium oxide nanoparticles fabricated on a graphene oxide nanocomposite for CO2 sequestration at elevated temperatures
Alkaline metal oxides incorporated into porous templates are considered novel chemisorbents for capturing greenhouse gases including CO2 at elevated temperatures. Thus, magnesium oxide nanoparticles (MONPs) and MONP incorporated graphene oxide (MONP–GO) were synthesized using a sol–gel method. Prepa...
Saved in:
Published in: | Environmental science. Nano 2020-04, Vol.7 (4), p.1225-1239 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1239 |
container_issue | 4 |
container_start_page | 1225 |
container_title | Environmental science. Nano |
container_volume | 7 |
creator | Gunathilake, C A G G T A Ranathunge Dassanayake, R S Illesinghe, S D Manchanda, Amanpreet S Kalpage, C S Rajapakse, R M G D G G P Karunaratne |
description | Alkaline metal oxides incorporated into porous templates are considered novel chemisorbents for capturing greenhouse gases including CO2 at elevated temperatures. Thus, magnesium oxide nanoparticles (MONPs) and MONP incorporated graphene oxide (MONP–GO) were synthesized using a sol–gel method. Preparation of these materials was carried out by a three-step facile synthesis route involving: (1) synthesis of magnesium oxide (MO) nanoparticles (MONPs), (2) synthesis of graphene oxide (GO) from commercially available graphene, and (3) incorporation of MONPs on graphene oxide. Both MONP and MONP–GO samples exhibited a significantly high CO2 uptake of 2.79–3.34 mmol g−1 at two different elevated temperatures (60 and 120 °C). The increased CO2 adsorption is due to the presence of terminal OH groups and acid–base pair sites at the magnesium (Mg2+–O2−) surface in the MONP and MONP–GO materials, respectively, resulting in the formation of hydrogen carbonate species and bidentate carbonate complexes with CO2 gas. Our composite material also possesses intriguing properties including high thermal and chemical stabilities, low-cost, and environmental benignity along with its enhanced CO2 sorption making it an excellent candidate for CO2 capture in fossil fuel-based power plants at elevated temperatures. |
doi_str_mv | 10.1039/c9en01442j |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2390559645</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2390559645</sourcerecordid><originalsourceid>FETCH-LOGICAL-p183t-4eff1b0191918c581e51fb5e49fa4943190d66e9d7d1ca48dad427df551fc8853</originalsourceid><addsrcrecordid>eNpNjs1KAzEUhYMoWLQbnyDgejSZJNPEnZT6A4VudF3Syc00pZOMSabo-_igxioid3EPh3PPdxG6ouSGEqZuWwWeUM7r3Qma1ETQStKGnv5pwc7RNKUdIYTSWrBmNkGfix5i53yHnT9Ayq7TOUScIDpIdzh9-LyF5BIOFve680WPPQ7vzgD22odBx-zaPSRs9Sa6VmcwOHiscRf1sAUP_8Jt6IeQXAZsC2O-qgvnbSzUqLP7PsoY9nA4dmToByj-GCFdojOr9wmmv_sCvT4sXuZP1XL1-Dy_X1YDlSxXHKylG0JVGdkKSUFQuxHAldVccUYVMU0DyswMbTWXRhtez4wVJdZKKdgFuv7pHWI4_rXehTH6glzXTBEhVMMF-wJ4OHI1</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390559645</pqid></control><display><type>article</type><title>Emerging investigator series: synthesis of magnesium oxide nanoparticles fabricated on a graphene oxide nanocomposite for CO2 sequestration at elevated temperatures</title><source>Royal Society of Chemistry Journals</source><creator>Gunathilake, C A ; G G T A Ranathunge ; Dassanayake, R S ; Illesinghe, S D ; Manchanda, Amanpreet S ; Kalpage, C S ; Rajapakse, R M G ; D G G P Karunaratne</creator><creatorcontrib>Gunathilake, C A ; G G T A Ranathunge ; Dassanayake, R S ; Illesinghe, S D ; Manchanda, Amanpreet S ; Kalpage, C S ; Rajapakse, R M G ; D G G P Karunaratne</creatorcontrib><description>Alkaline metal oxides incorporated into porous templates are considered novel chemisorbents for capturing greenhouse gases including CO2 at elevated temperatures. Thus, magnesium oxide nanoparticles (MONPs) and MONP incorporated graphene oxide (MONP–GO) were synthesized using a sol–gel method. Preparation of these materials was carried out by a three-step facile synthesis route involving: (1) synthesis of magnesium oxide (MO) nanoparticles (MONPs), (2) synthesis of graphene oxide (GO) from commercially available graphene, and (3) incorporation of MONPs on graphene oxide. Both MONP and MONP–GO samples exhibited a significantly high CO2 uptake of 2.79–3.34 mmol g−1 at two different elevated temperatures (60 and 120 °C). The increased CO2 adsorption is due to the presence of terminal OH groups and acid–base pair sites at the magnesium (Mg2+–O2−) surface in the MONP and MONP–GO materials, respectively, resulting in the formation of hydrogen carbonate species and bidentate carbonate complexes with CO2 gas. Our composite material also possesses intriguing properties including high thermal and chemical stabilities, low-cost, and environmental benignity along with its enhanced CO2 sorption making it an excellent candidate for CO2 capture in fossil fuel-based power plants at elevated temperatures.</description><identifier>ISSN: 2051-8153</identifier><identifier>EISSN: 2051-8161</identifier><identifier>DOI: 10.1039/c9en01442j</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Adsorption ; Carbon dioxide ; Carbon sequestration ; Carbonates ; Chemisorption ; Composite materials ; Electric power generation ; Fossil fuels ; Gases ; Gels ; Graphene ; Greenhouse effect ; Greenhouse gases ; High temperature ; Magnesium ; Magnesium oxide ; Metal oxides ; Metals ; Nanocomposites ; Nanoparticles ; Power plants ; Room temperature ; Sol-gel processes ; Superconductors (materials) ; Synthesis ; Templates ; Uptake</subject><ispartof>Environmental science. Nano, 2020-04, Vol.7 (4), p.1225-1239</ispartof><rights>Copyright Royal Society of Chemistry 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Gunathilake, C A</creatorcontrib><creatorcontrib>G G T A Ranathunge</creatorcontrib><creatorcontrib>Dassanayake, R S</creatorcontrib><creatorcontrib>Illesinghe, S D</creatorcontrib><creatorcontrib>Manchanda, Amanpreet S</creatorcontrib><creatorcontrib>Kalpage, C S</creatorcontrib><creatorcontrib>Rajapakse, R M G</creatorcontrib><creatorcontrib>D G G P Karunaratne</creatorcontrib><title>Emerging investigator series: synthesis of magnesium oxide nanoparticles fabricated on a graphene oxide nanocomposite for CO2 sequestration at elevated temperatures</title><title>Environmental science. Nano</title><description>Alkaline metal oxides incorporated into porous templates are considered novel chemisorbents for capturing greenhouse gases including CO2 at elevated temperatures. Thus, magnesium oxide nanoparticles (MONPs) and MONP incorporated graphene oxide (MONP–GO) were synthesized using a sol–gel method. Preparation of these materials was carried out by a three-step facile synthesis route involving: (1) synthesis of magnesium oxide (MO) nanoparticles (MONPs), (2) synthesis of graphene oxide (GO) from commercially available graphene, and (3) incorporation of MONPs on graphene oxide. Both MONP and MONP–GO samples exhibited a significantly high CO2 uptake of 2.79–3.34 mmol g−1 at two different elevated temperatures (60 and 120 °C). The increased CO2 adsorption is due to the presence of terminal OH groups and acid–base pair sites at the magnesium (Mg2+–O2−) surface in the MONP and MONP–GO materials, respectively, resulting in the formation of hydrogen carbonate species and bidentate carbonate complexes with CO2 gas. Our composite material also possesses intriguing properties including high thermal and chemical stabilities, low-cost, and environmental benignity along with its enhanced CO2 sorption making it an excellent candidate for CO2 capture in fossil fuel-based power plants at elevated temperatures.</description><subject>Adsorption</subject><subject>Carbon dioxide</subject><subject>Carbon sequestration</subject><subject>Carbonates</subject><subject>Chemisorption</subject><subject>Composite materials</subject><subject>Electric power generation</subject><subject>Fossil fuels</subject><subject>Gases</subject><subject>Gels</subject><subject>Graphene</subject><subject>Greenhouse effect</subject><subject>Greenhouse gases</subject><subject>High temperature</subject><subject>Magnesium</subject><subject>Magnesium oxide</subject><subject>Metal oxides</subject><subject>Metals</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Power plants</subject><subject>Room temperature</subject><subject>Sol-gel processes</subject><subject>Superconductors (materials)</subject><subject>Synthesis</subject><subject>Templates</subject><subject>Uptake</subject><issn>2051-8153</issn><issn>2051-8161</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNjs1KAzEUhYMoWLQbnyDgejSZJNPEnZT6A4VudF3Syc00pZOMSabo-_igxioid3EPh3PPdxG6ouSGEqZuWwWeUM7r3Qma1ETQStKGnv5pwc7RNKUdIYTSWrBmNkGfix5i53yHnT9Ayq7TOUScIDpIdzh9-LyF5BIOFve680WPPQ7vzgD22odBx-zaPSRs9Sa6VmcwOHiscRf1sAUP_8Jt6IeQXAZsC2O-qgvnbSzUqLP7PsoY9nA4dmToByj-GCFdojOr9wmmv_sCvT4sXuZP1XL1-Dy_X1YDlSxXHKylG0JVGdkKSUFQuxHAldVccUYVMU0DyswMbTWXRhtez4wVJdZKKdgFuv7pHWI4_rXehTH6glzXTBEhVMMF-wJ4OHI1</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Gunathilake, C A</creator><creator>G G T A Ranathunge</creator><creator>Dassanayake, R S</creator><creator>Illesinghe, S D</creator><creator>Manchanda, Amanpreet S</creator><creator>Kalpage, C S</creator><creator>Rajapakse, R M G</creator><creator>D G G P Karunaratne</creator><general>Royal Society of Chemistry</general><scope>7QH</scope><scope>7ST</scope><scope>7UA</scope><scope>C1K</scope><scope>F1W</scope><scope>H97</scope><scope>L.G</scope><scope>SOI</scope></search><sort><creationdate>20200401</creationdate><title>Emerging investigator series: synthesis of magnesium oxide nanoparticles fabricated on a graphene oxide nanocomposite for CO2 sequestration at elevated temperatures</title><author>Gunathilake, C A ; G G T A Ranathunge ; Dassanayake, R S ; Illesinghe, S D ; Manchanda, Amanpreet S ; Kalpage, C S ; Rajapakse, R M G ; D G G P Karunaratne</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p183t-4eff1b0191918c581e51fb5e49fa4943190d66e9d7d1ca48dad427df551fc8853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Carbon dioxide</topic><topic>Carbon sequestration</topic><topic>Carbonates</topic><topic>Chemisorption</topic><topic>Composite materials</topic><topic>Electric power generation</topic><topic>Fossil fuels</topic><topic>Gases</topic><topic>Gels</topic><topic>Graphene</topic><topic>Greenhouse effect</topic><topic>Greenhouse gases</topic><topic>High temperature</topic><topic>Magnesium</topic><topic>Magnesium oxide</topic><topic>Metal oxides</topic><topic>Metals</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Power plants</topic><topic>Room temperature</topic><topic>Sol-gel processes</topic><topic>Superconductors (materials)</topic><topic>Synthesis</topic><topic>Templates</topic><topic>Uptake</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gunathilake, C A</creatorcontrib><creatorcontrib>G G T A Ranathunge</creatorcontrib><creatorcontrib>Dassanayake, R S</creatorcontrib><creatorcontrib>Illesinghe, S D</creatorcontrib><creatorcontrib>Manchanda, Amanpreet S</creatorcontrib><creatorcontrib>Kalpage, C S</creatorcontrib><creatorcontrib>Rajapakse, R M G</creatorcontrib><creatorcontrib>D G G P Karunaratne</creatorcontrib><collection>Aqualine</collection><collection>Environment Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Environment Abstracts</collection><jtitle>Environmental science. Nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gunathilake, C A</au><au>G G T A Ranathunge</au><au>Dassanayake, R S</au><au>Illesinghe, S D</au><au>Manchanda, Amanpreet S</au><au>Kalpage, C S</au><au>Rajapakse, R M G</au><au>D G G P Karunaratne</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Emerging investigator series: synthesis of magnesium oxide nanoparticles fabricated on a graphene oxide nanocomposite for CO2 sequestration at elevated temperatures</atitle><jtitle>Environmental science. Nano</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>7</volume><issue>4</issue><spage>1225</spage><epage>1239</epage><pages>1225-1239</pages><issn>2051-8153</issn><eissn>2051-8161</eissn><abstract>Alkaline metal oxides incorporated into porous templates are considered novel chemisorbents for capturing greenhouse gases including CO2 at elevated temperatures. Thus, magnesium oxide nanoparticles (MONPs) and MONP incorporated graphene oxide (MONP–GO) were synthesized using a sol–gel method. Preparation of these materials was carried out by a three-step facile synthesis route involving: (1) synthesis of magnesium oxide (MO) nanoparticles (MONPs), (2) synthesis of graphene oxide (GO) from commercially available graphene, and (3) incorporation of MONPs on graphene oxide. Both MONP and MONP–GO samples exhibited a significantly high CO2 uptake of 2.79–3.34 mmol g−1 at two different elevated temperatures (60 and 120 °C). The increased CO2 adsorption is due to the presence of terminal OH groups and acid–base pair sites at the magnesium (Mg2+–O2−) surface in the MONP and MONP–GO materials, respectively, resulting in the formation of hydrogen carbonate species and bidentate carbonate complexes with CO2 gas. Our composite material also possesses intriguing properties including high thermal and chemical stabilities, low-cost, and environmental benignity along with its enhanced CO2 sorption making it an excellent candidate for CO2 capture in fossil fuel-based power plants at elevated temperatures.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c9en01442j</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2051-8153 |
ispartof | Environmental science. Nano, 2020-04, Vol.7 (4), p.1225-1239 |
issn | 2051-8153 2051-8161 |
language | eng |
recordid | cdi_proquest_journals_2390559645 |
source | Royal Society of Chemistry Journals |
subjects | Adsorption Carbon dioxide Carbon sequestration Carbonates Chemisorption Composite materials Electric power generation Fossil fuels Gases Gels Graphene Greenhouse effect Greenhouse gases High temperature Magnesium Magnesium oxide Metal oxides Metals Nanocomposites Nanoparticles Power plants Room temperature Sol-gel processes Superconductors (materials) Synthesis Templates Uptake |
title | Emerging investigator series: synthesis of magnesium oxide nanoparticles fabricated on a graphene oxide nanocomposite for CO2 sequestration at elevated temperatures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A35%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Emerging%20investigator%20series:%20synthesis%20of%20magnesium%20oxide%20nanoparticles%20fabricated%20on%20a%20graphene%20oxide%20nanocomposite%20for%20CO2%20sequestration%20at%20elevated%20temperatures&rft.jtitle=Environmental%20science.%20Nano&rft.au=Gunathilake,%20C%20A&rft.date=2020-04-01&rft.volume=7&rft.issue=4&rft.spage=1225&rft.epage=1239&rft.pages=1225-1239&rft.issn=2051-8153&rft.eissn=2051-8161&rft_id=info:doi/10.1039/c9en01442j&rft_dat=%3Cproquest%3E2390559645%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p183t-4eff1b0191918c581e51fb5e49fa4943190d66e9d7d1ca48dad427df551fc8853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2390559645&rft_id=info:pmid/&rfr_iscdi=true |