Loading…
Improving Multisensor Precipitation Estimation via Adaptive Conditional Bias–Penalized Merging of Rain Gauge Data and Remotely Sensed Quantitative Precipitation Estimates
We describe and evaluate adaptive conditional bias–penalized cokriging (CBPCK) for improved multisensor precipitation estimation using rain gauge data and remotely sensed quantitative precipitation estimates (QPE). The remotely sensed QPEs used are radar-only and radar–satellite-fused estimates. For...
Saved in:
Published in: | Journal of hydrometeorology 2019-12, Vol.20 (12), p.2347-2365 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We describe and evaluate adaptive conditional bias–penalized cokriging (CBPCK) for improved multisensor precipitation estimation using rain gauge data and remotely sensed quantitative precipitation estimates (QPE). The remotely sensed QPEs used are radar-only and radar–satellite-fused estimates. For comparative evaluation, true validation is carried out over the continental United States (CONUS) for 13–30 September 2015 and 7–9 October 2016. The hourly gauge data, radar-only QPE, and satellite QPE used are from the Hydrometeorological Automated Data System, Multi-Radar Multi-Sensor System, and Self-Calibrating Multivariate Precipitation Retrieval (SCaMPR), respectively. For radar–satellite fusion, conditional bias–penalized Fisher estimation is used. The reference merging technique compared is ordinary cokriging (OCK) used in the National Weather Service Multisensor Precipitation Estimator. It is shown that, beyond the reduction due to mean field bias (MFB) correction, both OCK and adaptive CBPCK additionally reduce the unconditional root-mean-square error (RMSE) of radar-only QPE by 9%–16% over the CONUS for the two periods, and that adaptive CBPCK is superior to OCK for estimation of hourly amounts exceeding 1 mm. When fused with the MFB-corrected radar QPE, the MFB-corrected SCaMPR QPE for September 2015 reduces the unconditional RMSE of the MFB-corrected radar by 4% and 6% over the entire and western half of the CONUS, respectively, but is inferior to the MFB-corrected radar for estimation of hourly amounts exceeding 7 mm. Adaptive CBPCK should hence be favored over OCK for estimation of significant amounts of precipitation despite larger computational cost, and the SCaMPR QPE should be used selectively in multisensor QPE. |
---|---|
ISSN: | 1525-755X 1525-7541 |
DOI: | 10.1175/JHM-D-19-0129.1 |