Loading…
Uncertainty of Reference Pixel Soil Moisture Averages Sampled at SMAP Core Validation Sites
Despite extensive efforts to maximize ground coverage and improve upscaling functions within core validation sites (CVS) of the NASA Soil Moisture Active Passive (SMAP) mission, spatial averages of pointscale soil moisture observations often fail to accurately capture the true average of the referen...
Saved in:
Published in: | Journal of hydrometeorology 2019-08, Vol.20 (8), p.1553-1569 |
---|---|
Main Authors: | , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c444t-99e7e326e196f9b45d2ada55baf3948ebe85d1110d6c332850783d2f3378d4fd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c444t-99e7e326e196f9b45d2ada55baf3948ebe85d1110d6c332850783d2f3378d4fd3 |
container_end_page | 1569 |
container_issue | 8 |
container_start_page | 1553 |
container_title | Journal of hydrometeorology |
container_volume | 20 |
creator | Chen, Fan Crow, Wade T. Cosh, Michael H. Colliander, Andreas Asanuma, Jun Berg, Aaron Bosch, David D. Caldwell, Todd G. Collins, Chandra Holifield Jensen, Karsten Høgh Martínez-Fernández, Jose Mcnairn, Heather Starks, Patrick J. Su, Zhongbo Walker, Jeffrey P. |
description | Despite extensive efforts to maximize ground coverage and improve upscaling functions within core validation sites (CVS) of the NASA Soil Moisture Active Passive (SMAP) mission, spatial averages of pointscale soil moisture observations often fail to accurately capture the true average of the reference pixels. Therefore, some level of pixel-scale sampling error from in situ observations must be considered during the validation of SMAP soil moisture retrievals. Here, uncertainties in the SMAP core site average soil moisture (CSASM) due to spatial sampling errors are examined and their impact on CSASM-based SMAP calibration and validation metrics is discussed. The estimated uncertainty (due to spatial sampling limitations) of mean CSASM over time is found to be large, translating into relatively large sampling uncertainty levels for SMAP retrieval bias when calculated against CSASM. As a result, CSASM-based SMAP bias estimates are statistically insignificant at nearly all SMAP CVS. In addition, observations from temporary networks suggest that these (already large) bias uncertainties may be underestimated due to undersampled spatial variability. The unbiased root-mean-square error (ubRMSE) of CSASM is estimated via two approaches: classical sampling theory and triple collocation, both of which suggest that CSASM ubRMSE is generally within the range of 0.01–0.02 mm−3. Although limitations in both methods likely lead to underestimation of ubRMSE, the results suggest that CSASM captures the temporal dynamics of the footprint-scale soil moisture relatively well and is thus a reliable reference for SMAP ubRMSE calculations. Therefore, spatial sampling errors are revealed to have very different impacts on efforts to estimate SMAP bias and ubRMSE metrics using CVS data. |
doi_str_mv | 10.1175/jhm-d-19-0049.1 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2390783467</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26832261</jstor_id><sourcerecordid>26832261</sourcerecordid><originalsourceid>FETCH-LOGICAL-c444t-99e7e326e196f9b45d2ada55baf3948ebe85d1110d6c332850783d2f3378d4fd3</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsFbPnoQFz2mzX0n2WOpHlRaLsSJ4WLbZiSak2bq7Ffvfm1DxNMPM770HD6FLEo8IScW4_txEJiIyimMuR-QIDYigIkoFJ8f_u3g7RWfe13EPkWyA3ldtAS7oqg17bEv8DCU46G54Wf1Ag3NbNXhhKx92DvDkG5z-AI9zvdk2YLAOOF9Mlnhqu--rbiqjQ2VbnFcB_Dk6KXXj4eJvDtHq7vZlOovmT_cP08k8KjjnIZISUmA0ASKTUq65MFQbLcRal0zyDNaQCUMIiU1SMEYzEacZM7RkLM0MLw0bouuD79bZrx34oGq7c20XqSiTPc2TtKPGB6pw1nsHpdq6aqPdXpFY9Q2qx9lC3SgiVV-OIp3i6qCofbDuH6dJxihNCPsF-W1tWg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390783467</pqid></control><display><type>article</type><title>Uncertainty of Reference Pixel Soil Moisture Averages Sampled at SMAP Core Validation Sites</title><source>JSTOR Archival Journals</source><creator>Chen, Fan ; Crow, Wade T. ; Cosh, Michael H. ; Colliander, Andreas ; Asanuma, Jun ; Berg, Aaron ; Bosch, David D. ; Caldwell, Todd G. ; Collins, Chandra Holifield ; Jensen, Karsten Høgh ; Martínez-Fernández, Jose ; Mcnairn, Heather ; Starks, Patrick J. ; Su, Zhongbo ; Walker, Jeffrey P.</creator><creatorcontrib>Chen, Fan ; Crow, Wade T. ; Cosh, Michael H. ; Colliander, Andreas ; Asanuma, Jun ; Berg, Aaron ; Bosch, David D. ; Caldwell, Todd G. ; Collins, Chandra Holifield ; Jensen, Karsten Høgh ; Martínez-Fernández, Jose ; Mcnairn, Heather ; Starks, Patrick J. ; Su, Zhongbo ; Walker, Jeffrey P.</creatorcontrib><description>Despite extensive efforts to maximize ground coverage and improve upscaling functions within core validation sites (CVS) of the NASA Soil Moisture Active Passive (SMAP) mission, spatial averages of pointscale soil moisture observations often fail to accurately capture the true average of the reference pixels. Therefore, some level of pixel-scale sampling error from in situ observations must be considered during the validation of SMAP soil moisture retrievals. Here, uncertainties in the SMAP core site average soil moisture (CSASM) due to spatial sampling errors are examined and their impact on CSASM-based SMAP calibration and validation metrics is discussed. The estimated uncertainty (due to spatial sampling limitations) of mean CSASM over time is found to be large, translating into relatively large sampling uncertainty levels for SMAP retrieval bias when calculated against CSASM. As a result, CSASM-based SMAP bias estimates are statistically insignificant at nearly all SMAP CVS. In addition, observations from temporary networks suggest that these (already large) bias uncertainties may be underestimated due to undersampled spatial variability. The unbiased root-mean-square error (ubRMSE) of CSASM is estimated via two approaches: classical sampling theory and triple collocation, both of which suggest that CSASM ubRMSE is generally within the range of 0.01–0.02 mm−3. Although limitations in both methods likely lead to underestimation of ubRMSE, the results suggest that CSASM captures the temporal dynamics of the footprint-scale soil moisture relatively well and is thus a reliable reference for SMAP ubRMSE calculations. Therefore, spatial sampling errors are revealed to have very different impacts on efforts to estimate SMAP bias and ubRMSE metrics using CVS data.</description><identifier>ISSN: 1525-755X</identifier><identifier>EISSN: 1525-7541</identifier><identifier>DOI: 10.1175/jhm-d-19-0049.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Bias ; Confidence intervals ; Errors ; Estimates ; Ground cover ; Irrigation ; Mathematical analysis ; Pixels ; Remote sensing ; Sampling ; Sampling error ; Sensors ; Soil ; Soil dynamics ; Soil moisture ; Soils ; Spatial variability ; Spatial variations ; Statistical analysis ; Uncertainty</subject><ispartof>Journal of hydrometeorology, 2019-08, Vol.20 (8), p.1553-1569</ispartof><rights>2019 American Meteorological Society</rights><rights>Copyright American Meteorological Society Aug 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c444t-99e7e326e196f9b45d2ada55baf3948ebe85d1110d6c332850783d2f3378d4fd3</citedby><cites>FETCH-LOGICAL-c444t-99e7e326e196f9b45d2ada55baf3948ebe85d1110d6c332850783d2f3378d4fd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26832261$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26832261$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Chen, Fan</creatorcontrib><creatorcontrib>Crow, Wade T.</creatorcontrib><creatorcontrib>Cosh, Michael H.</creatorcontrib><creatorcontrib>Colliander, Andreas</creatorcontrib><creatorcontrib>Asanuma, Jun</creatorcontrib><creatorcontrib>Berg, Aaron</creatorcontrib><creatorcontrib>Bosch, David D.</creatorcontrib><creatorcontrib>Caldwell, Todd G.</creatorcontrib><creatorcontrib>Collins, Chandra Holifield</creatorcontrib><creatorcontrib>Jensen, Karsten Høgh</creatorcontrib><creatorcontrib>Martínez-Fernández, Jose</creatorcontrib><creatorcontrib>Mcnairn, Heather</creatorcontrib><creatorcontrib>Starks, Patrick J.</creatorcontrib><creatorcontrib>Su, Zhongbo</creatorcontrib><creatorcontrib>Walker, Jeffrey P.</creatorcontrib><title>Uncertainty of Reference Pixel Soil Moisture Averages Sampled at SMAP Core Validation Sites</title><title>Journal of hydrometeorology</title><description>Despite extensive efforts to maximize ground coverage and improve upscaling functions within core validation sites (CVS) of the NASA Soil Moisture Active Passive (SMAP) mission, spatial averages of pointscale soil moisture observations often fail to accurately capture the true average of the reference pixels. Therefore, some level of pixel-scale sampling error from in situ observations must be considered during the validation of SMAP soil moisture retrievals. Here, uncertainties in the SMAP core site average soil moisture (CSASM) due to spatial sampling errors are examined and their impact on CSASM-based SMAP calibration and validation metrics is discussed. The estimated uncertainty (due to spatial sampling limitations) of mean CSASM over time is found to be large, translating into relatively large sampling uncertainty levels for SMAP retrieval bias when calculated against CSASM. As a result, CSASM-based SMAP bias estimates are statistically insignificant at nearly all SMAP CVS. In addition, observations from temporary networks suggest that these (already large) bias uncertainties may be underestimated due to undersampled spatial variability. The unbiased root-mean-square error (ubRMSE) of CSASM is estimated via two approaches: classical sampling theory and triple collocation, both of which suggest that CSASM ubRMSE is generally within the range of 0.01–0.02 mm−3. Although limitations in both methods likely lead to underestimation of ubRMSE, the results suggest that CSASM captures the temporal dynamics of the footprint-scale soil moisture relatively well and is thus a reliable reference for SMAP ubRMSE calculations. Therefore, spatial sampling errors are revealed to have very different impacts on efforts to estimate SMAP bias and ubRMSE metrics using CVS data.</description><subject>Bias</subject><subject>Confidence intervals</subject><subject>Errors</subject><subject>Estimates</subject><subject>Ground cover</subject><subject>Irrigation</subject><subject>Mathematical analysis</subject><subject>Pixels</subject><subject>Remote sensing</subject><subject>Sampling</subject><subject>Sampling error</subject><subject>Sensors</subject><subject>Soil</subject><subject>Soil dynamics</subject><subject>Soil moisture</subject><subject>Soils</subject><subject>Spatial variability</subject><subject>Spatial variations</subject><subject>Statistical analysis</subject><subject>Uncertainty</subject><issn>1525-755X</issn><issn>1525-7541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kM1Lw0AQxRdRsFbPnoQFz2mzX0n2WOpHlRaLsSJ4WLbZiSak2bq7Ffvfm1DxNMPM770HD6FLEo8IScW4_txEJiIyimMuR-QIDYigIkoFJ8f_u3g7RWfe13EPkWyA3ldtAS7oqg17bEv8DCU46G54Wf1Ag3NbNXhhKx92DvDkG5z-AI9zvdk2YLAOOF9Mlnhqu--rbiqjQ2VbnFcB_Dk6KXXj4eJvDtHq7vZlOovmT_cP08k8KjjnIZISUmA0ASKTUq65MFQbLcRal0zyDNaQCUMIiU1SMEYzEacZM7RkLM0MLw0bouuD79bZrx34oGq7c20XqSiTPc2TtKPGB6pw1nsHpdq6aqPdXpFY9Q2qx9lC3SgiVV-OIp3i6qCofbDuH6dJxihNCPsF-W1tWg</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Chen, Fan</creator><creator>Crow, Wade T.</creator><creator>Cosh, Michael H.</creator><creator>Colliander, Andreas</creator><creator>Asanuma, Jun</creator><creator>Berg, Aaron</creator><creator>Bosch, David D.</creator><creator>Caldwell, Todd G.</creator><creator>Collins, Chandra Holifield</creator><creator>Jensen, Karsten Høgh</creator><creator>Martínez-Fernández, Jose</creator><creator>Mcnairn, Heather</creator><creator>Starks, Patrick J.</creator><creator>Su, Zhongbo</creator><creator>Walker, Jeffrey P.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20190801</creationdate><title>Uncertainty of Reference Pixel Soil Moisture Averages Sampled at SMAP Core Validation Sites</title><author>Chen, Fan ; Crow, Wade T. ; Cosh, Michael H. ; Colliander, Andreas ; Asanuma, Jun ; Berg, Aaron ; Bosch, David D. ; Caldwell, Todd G. ; Collins, Chandra Holifield ; Jensen, Karsten Høgh ; Martínez-Fernández, Jose ; Mcnairn, Heather ; Starks, Patrick J. ; Su, Zhongbo ; Walker, Jeffrey P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c444t-99e7e326e196f9b45d2ada55baf3948ebe85d1110d6c332850783d2f3378d4fd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Bias</topic><topic>Confidence intervals</topic><topic>Errors</topic><topic>Estimates</topic><topic>Ground cover</topic><topic>Irrigation</topic><topic>Mathematical analysis</topic><topic>Pixels</topic><topic>Remote sensing</topic><topic>Sampling</topic><topic>Sampling error</topic><topic>Sensors</topic><topic>Soil</topic><topic>Soil dynamics</topic><topic>Soil moisture</topic><topic>Soils</topic><topic>Spatial variability</topic><topic>Spatial variations</topic><topic>Statistical analysis</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Fan</creatorcontrib><creatorcontrib>Crow, Wade T.</creatorcontrib><creatorcontrib>Cosh, Michael H.</creatorcontrib><creatorcontrib>Colliander, Andreas</creatorcontrib><creatorcontrib>Asanuma, Jun</creatorcontrib><creatorcontrib>Berg, Aaron</creatorcontrib><creatorcontrib>Bosch, David D.</creatorcontrib><creatorcontrib>Caldwell, Todd G.</creatorcontrib><creatorcontrib>Collins, Chandra Holifield</creatorcontrib><creatorcontrib>Jensen, Karsten Høgh</creatorcontrib><creatorcontrib>Martínez-Fernández, Jose</creatorcontrib><creatorcontrib>Mcnairn, Heather</creatorcontrib><creatorcontrib>Starks, Patrick J.</creatorcontrib><creatorcontrib>Su, Zhongbo</creatorcontrib><creatorcontrib>Walker, Jeffrey P.</creatorcontrib><collection>CrossRef</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Journal of hydrometeorology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Fan</au><au>Crow, Wade T.</au><au>Cosh, Michael H.</au><au>Colliander, Andreas</au><au>Asanuma, Jun</au><au>Berg, Aaron</au><au>Bosch, David D.</au><au>Caldwell, Todd G.</au><au>Collins, Chandra Holifield</au><au>Jensen, Karsten Høgh</au><au>Martínez-Fernández, Jose</au><au>Mcnairn, Heather</au><au>Starks, Patrick J.</au><au>Su, Zhongbo</au><au>Walker, Jeffrey P.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty of Reference Pixel Soil Moisture Averages Sampled at SMAP Core Validation Sites</atitle><jtitle>Journal of hydrometeorology</jtitle><date>2019-08-01</date><risdate>2019</risdate><volume>20</volume><issue>8</issue><spage>1553</spage><epage>1569</epage><pages>1553-1569</pages><issn>1525-755X</issn><eissn>1525-7541</eissn><abstract>Despite extensive efforts to maximize ground coverage and improve upscaling functions within core validation sites (CVS) of the NASA Soil Moisture Active Passive (SMAP) mission, spatial averages of pointscale soil moisture observations often fail to accurately capture the true average of the reference pixels. Therefore, some level of pixel-scale sampling error from in situ observations must be considered during the validation of SMAP soil moisture retrievals. Here, uncertainties in the SMAP core site average soil moisture (CSASM) due to spatial sampling errors are examined and their impact on CSASM-based SMAP calibration and validation metrics is discussed. The estimated uncertainty (due to spatial sampling limitations) of mean CSASM over time is found to be large, translating into relatively large sampling uncertainty levels for SMAP retrieval bias when calculated against CSASM. As a result, CSASM-based SMAP bias estimates are statistically insignificant at nearly all SMAP CVS. In addition, observations from temporary networks suggest that these (already large) bias uncertainties may be underestimated due to undersampled spatial variability. The unbiased root-mean-square error (ubRMSE) of CSASM is estimated via two approaches: classical sampling theory and triple collocation, both of which suggest that CSASM ubRMSE is generally within the range of 0.01–0.02 mm−3. Although limitations in both methods likely lead to underestimation of ubRMSE, the results suggest that CSASM captures the temporal dynamics of the footprint-scale soil moisture relatively well and is thus a reliable reference for SMAP ubRMSE calculations. Therefore, spatial sampling errors are revealed to have very different impacts on efforts to estimate SMAP bias and ubRMSE metrics using CVS data.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/jhm-d-19-0049.1</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1525-755X |
ispartof | Journal of hydrometeorology, 2019-08, Vol.20 (8), p.1553-1569 |
issn | 1525-755X 1525-7541 |
language | eng |
recordid | cdi_proquest_journals_2390783467 |
source | JSTOR Archival Journals |
subjects | Bias Confidence intervals Errors Estimates Ground cover Irrigation Mathematical analysis Pixels Remote sensing Sampling Sampling error Sensors Soil Soil dynamics Soil moisture Soils Spatial variability Spatial variations Statistical analysis Uncertainty |
title | Uncertainty of Reference Pixel Soil Moisture Averages Sampled at SMAP Core Validation Sites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T15%3A56%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20of%20Reference%20Pixel%20Soil%20Moisture%20Averages%20Sampled%20at%20SMAP%20Core%20Validation%20Sites&rft.jtitle=Journal%20of%20hydrometeorology&rft.au=Chen,%20Fan&rft.date=2019-08-01&rft.volume=20&rft.issue=8&rft.spage=1553&rft.epage=1569&rft.pages=1553-1569&rft.issn=1525-755X&rft.eissn=1525-7541&rft_id=info:doi/10.1175/jhm-d-19-0049.1&rft_dat=%3Cjstor_proqu%3E26832261%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c444t-99e7e326e196f9b45d2ada55baf3948ebe85d1110d6c332850783d2f3378d4fd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2390783467&rft_id=info:pmid/&rft_jstor_id=26832261&rfr_iscdi=true |