Loading…

Shear-induced gelation of self-yielding active networks

Molecular-motor generated active stresses drive the cytoskeleton away from equilibrium, endowing it with tunable mechanical properties that are essential for diverse functions such as cell division and motility[1-5]. Designing analogous biomimetic systems is a key prerequisite for creating active ma...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-04
Main Authors: Gagnon, David A, Dessi, Claudia, Berezney, John P, Chen, Daniel T -N, Boros, Remi, Dogic, Zvonimir, Blair, Daniel L
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Gagnon, David A
Dessi, Claudia
Berezney, John P
Chen, Daniel T -N
Boros, Remi
Dogic, Zvonimir
Blair, Daniel L
description Molecular-motor generated active stresses drive the cytoskeleton away from equilibrium, endowing it with tunable mechanical properties that are essential for diverse functions such as cell division and motility[1-5]. Designing analogous biomimetic systems is a key prerequisite for creating active matter that can emulate cellular functions[6-7]. These long-term goals requires understanding of how motor-generated stresses tune the mechanics of filamentous networks[8-11]. In microtubule-based active matter, kinesin motors generate extensile motion that leads to persistent breaking and reforming of the network links[12]. We study how such microscopic dynamics modifies the network's mechanical properties, uncovering that the network viscosity first increases with the imposed shear rate before transitioning back to a low-viscosity state. The non-monotonic shear-dependent viscosity can be controlled by tuning the speed of molecular motors. A two-state phenomenological model that incorporates liquid- and solid-like elements quantitatively relates the non-monotonic shear-rate-dependent viscosity to locally-measured flows. These studies show that rheology of extensile networks are different from previously studied active gels[13], where contractility enhances mechanical stiffness. Moreover, the flow induced gelation is not captured by continuum models of hydrodynamically interacting swimmers[14-21]. Observation of activity-dependent viscoelasticity necessitates the development of models for self-yielding of soft active solids whose intrinsic active stresses fluidize or stiffen the network.
doi_str_mv 10.48550/arxiv.2004.07331
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2391023444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2391023444</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-829bd97e64573c3ea4b58ff051a91d2415d706840d959efe1506279814b339153</originalsourceid><addsrcrecordid>eNotjV1LwzAUQIMgOOZ-gG8Fn1Nvbm6a5lGGXzDwwb2PtLmZmaXVpp367x24p_NyOEeIGwUl1cbAnR9_0rFEACrBaq0uxAJPkDUhXolVzgcAwMqiMXoh7Ns7-1GmPswth2LPnZ_S0BdDLDJ3Uf4m7kLq94Vvp3Tkoufpexg_8rW4jL7LvDpzKbaPD9v1s9y8Pr2s7zfSGyRZo2uCs1yRsbrV7KkxdYxglHcqICkTLFQ1QXDGcWRloELrakWN1k4ZvRS3_9nPcfiaOU-7wzCP_em4w5MAqIlI_wEiQEYs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391023444</pqid></control><display><type>article</type><title>Shear-induced gelation of self-yielding active networks</title><source>Publicly Available Content Database</source><creator>Gagnon, David A ; Dessi, Claudia ; Berezney, John P ; Chen, Daniel T -N ; Boros, Remi ; Dogic, Zvonimir ; Blair, Daniel L</creator><creatorcontrib>Gagnon, David A ; Dessi, Claudia ; Berezney, John P ; Chen, Daniel T -N ; Boros, Remi ; Dogic, Zvonimir ; Blair, Daniel L</creatorcontrib><description>Molecular-motor generated active stresses drive the cytoskeleton away from equilibrium, endowing it with tunable mechanical properties that are essential for diverse functions such as cell division and motility[1-5]. Designing analogous biomimetic systems is a key prerequisite for creating active matter that can emulate cellular functions[6-7]. These long-term goals requires understanding of how motor-generated stresses tune the mechanics of filamentous networks[8-11]. In microtubule-based active matter, kinesin motors generate extensile motion that leads to persistent breaking and reforming of the network links[12]. We study how such microscopic dynamics modifies the network's mechanical properties, uncovering that the network viscosity first increases with the imposed shear rate before transitioning back to a low-viscosity state. The non-monotonic shear-dependent viscosity can be controlled by tuning the speed of molecular motors. A two-state phenomenological model that incorporates liquid- and solid-like elements quantitatively relates the non-monotonic shear-rate-dependent viscosity to locally-measured flows. These studies show that rheology of extensile networks are different from previously studied active gels[13], where contractility enhances mechanical stiffness. Moreover, the flow induced gelation is not captured by continuum models of hydrodynamically interacting swimmers[14-21]. Observation of activity-dependent viscoelasticity necessitates the development of models for self-yielding of soft active solids whose intrinsic active stresses fluidize or stiffen the network.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2004.07331</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Biomimetics ; Cell division ; Continuum modeling ; Dynamic mechanical properties ; Fluidizing ; Gelation ; Gels ; Mechanical properties ; Molecular motors ; Networks ; Reforming ; Rheological properties ; Rheology ; Shear rate ; Stiffness ; Stresses ; Viscoelasticity ; Viscosity</subject><ispartof>arXiv.org, 2020-04</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2391023444?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>778,782,25736,27908,36995,44573</link.rule.ids></links><search><creatorcontrib>Gagnon, David A</creatorcontrib><creatorcontrib>Dessi, Claudia</creatorcontrib><creatorcontrib>Berezney, John P</creatorcontrib><creatorcontrib>Chen, Daniel T -N</creatorcontrib><creatorcontrib>Boros, Remi</creatorcontrib><creatorcontrib>Dogic, Zvonimir</creatorcontrib><creatorcontrib>Blair, Daniel L</creatorcontrib><title>Shear-induced gelation of self-yielding active networks</title><title>arXiv.org</title><description>Molecular-motor generated active stresses drive the cytoskeleton away from equilibrium, endowing it with tunable mechanical properties that are essential for diverse functions such as cell division and motility[1-5]. Designing analogous biomimetic systems is a key prerequisite for creating active matter that can emulate cellular functions[6-7]. These long-term goals requires understanding of how motor-generated stresses tune the mechanics of filamentous networks[8-11]. In microtubule-based active matter, kinesin motors generate extensile motion that leads to persistent breaking and reforming of the network links[12]. We study how such microscopic dynamics modifies the network's mechanical properties, uncovering that the network viscosity first increases with the imposed shear rate before transitioning back to a low-viscosity state. The non-monotonic shear-dependent viscosity can be controlled by tuning the speed of molecular motors. A two-state phenomenological model that incorporates liquid- and solid-like elements quantitatively relates the non-monotonic shear-rate-dependent viscosity to locally-measured flows. These studies show that rheology of extensile networks are different from previously studied active gels[13], where contractility enhances mechanical stiffness. Moreover, the flow induced gelation is not captured by continuum models of hydrodynamically interacting swimmers[14-21]. Observation of activity-dependent viscoelasticity necessitates the development of models for self-yielding of soft active solids whose intrinsic active stresses fluidize or stiffen the network.</description><subject>Biomimetics</subject><subject>Cell division</subject><subject>Continuum modeling</subject><subject>Dynamic mechanical properties</subject><subject>Fluidizing</subject><subject>Gelation</subject><subject>Gels</subject><subject>Mechanical properties</subject><subject>Molecular motors</subject><subject>Networks</subject><subject>Reforming</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Shear rate</subject><subject>Stiffness</subject><subject>Stresses</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjV1LwzAUQIMgOOZ-gG8Fn1Nvbm6a5lGGXzDwwb2PtLmZmaXVpp367x24p_NyOEeIGwUl1cbAnR9_0rFEACrBaq0uxAJPkDUhXolVzgcAwMqiMXoh7Ns7-1GmPswth2LPnZ_S0BdDLDJ3Uf4m7kLq94Vvp3Tkoufpexg_8rW4jL7LvDpzKbaPD9v1s9y8Pr2s7zfSGyRZo2uCs1yRsbrV7KkxdYxglHcqICkTLFQ1QXDGcWRloELrakWN1k4ZvRS3_9nPcfiaOU-7wzCP_em4w5MAqIlI_wEiQEYs</recordid><startdate>20200429</startdate><enddate>20200429</enddate><creator>Gagnon, David A</creator><creator>Dessi, Claudia</creator><creator>Berezney, John P</creator><creator>Chen, Daniel T -N</creator><creator>Boros, Remi</creator><creator>Dogic, Zvonimir</creator><creator>Blair, Daniel L</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200429</creationdate><title>Shear-induced gelation of self-yielding active networks</title><author>Gagnon, David A ; Dessi, Claudia ; Berezney, John P ; Chen, Daniel T -N ; Boros, Remi ; Dogic, Zvonimir ; Blair, Daniel L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-829bd97e64573c3ea4b58ff051a91d2415d706840d959efe1506279814b339153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomimetics</topic><topic>Cell division</topic><topic>Continuum modeling</topic><topic>Dynamic mechanical properties</topic><topic>Fluidizing</topic><topic>Gelation</topic><topic>Gels</topic><topic>Mechanical properties</topic><topic>Molecular motors</topic><topic>Networks</topic><topic>Reforming</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Shear rate</topic><topic>Stiffness</topic><topic>Stresses</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><toplevel>online_resources</toplevel><creatorcontrib>Gagnon, David A</creatorcontrib><creatorcontrib>Dessi, Claudia</creatorcontrib><creatorcontrib>Berezney, John P</creatorcontrib><creatorcontrib>Chen, Daniel T -N</creatorcontrib><creatorcontrib>Boros, Remi</creatorcontrib><creatorcontrib>Dogic, Zvonimir</creatorcontrib><creatorcontrib>Blair, Daniel L</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gagnon, David A</au><au>Dessi, Claudia</au><au>Berezney, John P</au><au>Chen, Daniel T -N</au><au>Boros, Remi</au><au>Dogic, Zvonimir</au><au>Blair, Daniel L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shear-induced gelation of self-yielding active networks</atitle><jtitle>arXiv.org</jtitle><date>2020-04-29</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Molecular-motor generated active stresses drive the cytoskeleton away from equilibrium, endowing it with tunable mechanical properties that are essential for diverse functions such as cell division and motility[1-5]. Designing analogous biomimetic systems is a key prerequisite for creating active matter that can emulate cellular functions[6-7]. These long-term goals requires understanding of how motor-generated stresses tune the mechanics of filamentous networks[8-11]. In microtubule-based active matter, kinesin motors generate extensile motion that leads to persistent breaking and reforming of the network links[12]. We study how such microscopic dynamics modifies the network's mechanical properties, uncovering that the network viscosity first increases with the imposed shear rate before transitioning back to a low-viscosity state. The non-monotonic shear-dependent viscosity can be controlled by tuning the speed of molecular motors. A two-state phenomenological model that incorporates liquid- and solid-like elements quantitatively relates the non-monotonic shear-rate-dependent viscosity to locally-measured flows. These studies show that rheology of extensile networks are different from previously studied active gels[13], where contractility enhances mechanical stiffness. Moreover, the flow induced gelation is not captured by continuum models of hydrodynamically interacting swimmers[14-21]. Observation of activity-dependent viscoelasticity necessitates the development of models for self-yielding of soft active solids whose intrinsic active stresses fluidize or stiffen the network.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2004.07331</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2391023444
source Publicly Available Content Database
subjects Biomimetics
Cell division
Continuum modeling
Dynamic mechanical properties
Fluidizing
Gelation
Gels
Mechanical properties
Molecular motors
Networks
Reforming
Rheological properties
Rheology
Shear rate
Stiffness
Stresses
Viscoelasticity
Viscosity
title Shear-induced gelation of self-yielding active networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A09%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shear-induced%20gelation%20of%20self-yielding%20active%20networks&rft.jtitle=arXiv.org&rft.au=Gagnon,%20David%20A&rft.date=2020-04-29&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2004.07331&rft_dat=%3Cproquest%3E2391023444%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-829bd97e64573c3ea4b58ff051a91d2415d706840d959efe1506279814b339153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2391023444&rft_id=info:pmid/&rfr_iscdi=true