Loading…
Shear-induced gelation of self-yielding active networks
Molecular-motor generated active stresses drive the cytoskeleton away from equilibrium, endowing it with tunable mechanical properties that are essential for diverse functions such as cell division and motility[1-5]. Designing analogous biomimetic systems is a key prerequisite for creating active ma...
Saved in:
Published in: | arXiv.org 2020-04 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | |
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gagnon, David A Dessi, Claudia Berezney, John P Chen, Daniel T -N Boros, Remi Dogic, Zvonimir Blair, Daniel L |
description | Molecular-motor generated active stresses drive the cytoskeleton away from equilibrium, endowing it with tunable mechanical properties that are essential for diverse functions such as cell division and motility[1-5]. Designing analogous biomimetic systems is a key prerequisite for creating active matter that can emulate cellular functions[6-7]. These long-term goals requires understanding of how motor-generated stresses tune the mechanics of filamentous networks[8-11]. In microtubule-based active matter, kinesin motors generate extensile motion that leads to persistent breaking and reforming of the network links[12]. We study how such microscopic dynamics modifies the network's mechanical properties, uncovering that the network viscosity first increases with the imposed shear rate before transitioning back to a low-viscosity state. The non-monotonic shear-dependent viscosity can be controlled by tuning the speed of molecular motors. A two-state phenomenological model that incorporates liquid- and solid-like elements quantitatively relates the non-monotonic shear-rate-dependent viscosity to locally-measured flows. These studies show that rheology of extensile networks are different from previously studied active gels[13], where contractility enhances mechanical stiffness. Moreover, the flow induced gelation is not captured by continuum models of hydrodynamically interacting swimmers[14-21]. Observation of activity-dependent viscoelasticity necessitates the development of models for self-yielding of soft active solids whose intrinsic active stresses fluidize or stiffen the network. |
doi_str_mv | 10.48550/arxiv.2004.07331 |
format | article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2391023444</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2391023444</sourcerecordid><originalsourceid>FETCH-LOGICAL-a524-829bd97e64573c3ea4b58ff051a91d2415d706840d959efe1506279814b339153</originalsourceid><addsrcrecordid>eNotjV1LwzAUQIMgOOZ-gG8Fn1Nvbm6a5lGGXzDwwb2PtLmZmaXVpp367x24p_NyOEeIGwUl1cbAnR9_0rFEACrBaq0uxAJPkDUhXolVzgcAwMqiMXoh7Ns7-1GmPswth2LPnZ_S0BdDLDJ3Uf4m7kLq94Vvp3Tkoufpexg_8rW4jL7LvDpzKbaPD9v1s9y8Pr2s7zfSGyRZo2uCs1yRsbrV7KkxdYxglHcqICkTLFQ1QXDGcWRloELrakWN1k4ZvRS3_9nPcfiaOU-7wzCP_em4w5MAqIlI_wEiQEYs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391023444</pqid></control><display><type>article</type><title>Shear-induced gelation of self-yielding active networks</title><source>Publicly Available Content Database</source><creator>Gagnon, David A ; Dessi, Claudia ; Berezney, John P ; Chen, Daniel T -N ; Boros, Remi ; Dogic, Zvonimir ; Blair, Daniel L</creator><creatorcontrib>Gagnon, David A ; Dessi, Claudia ; Berezney, John P ; Chen, Daniel T -N ; Boros, Remi ; Dogic, Zvonimir ; Blair, Daniel L</creatorcontrib><description>Molecular-motor generated active stresses drive the cytoskeleton away from equilibrium, endowing it with tunable mechanical properties that are essential for diverse functions such as cell division and motility[1-5]. Designing analogous biomimetic systems is a key prerequisite for creating active matter that can emulate cellular functions[6-7]. These long-term goals requires understanding of how motor-generated stresses tune the mechanics of filamentous networks[8-11]. In microtubule-based active matter, kinesin motors generate extensile motion that leads to persistent breaking and reforming of the network links[12]. We study how such microscopic dynamics modifies the network's mechanical properties, uncovering that the network viscosity first increases with the imposed shear rate before transitioning back to a low-viscosity state. The non-monotonic shear-dependent viscosity can be controlled by tuning the speed of molecular motors. A two-state phenomenological model that incorporates liquid- and solid-like elements quantitatively relates the non-monotonic shear-rate-dependent viscosity to locally-measured flows. These studies show that rheology of extensile networks are different from previously studied active gels[13], where contractility enhances mechanical stiffness. Moreover, the flow induced gelation is not captured by continuum models of hydrodynamically interacting swimmers[14-21]. Observation of activity-dependent viscoelasticity necessitates the development of models for self-yielding of soft active solids whose intrinsic active stresses fluidize or stiffen the network.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2004.07331</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Biomimetics ; Cell division ; Continuum modeling ; Dynamic mechanical properties ; Fluidizing ; Gelation ; Gels ; Mechanical properties ; Molecular motors ; Networks ; Reforming ; Rheological properties ; Rheology ; Shear rate ; Stiffness ; Stresses ; Viscoelasticity ; Viscosity</subject><ispartof>arXiv.org, 2020-04</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2391023444?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>778,782,25736,27908,36995,44573</link.rule.ids></links><search><creatorcontrib>Gagnon, David A</creatorcontrib><creatorcontrib>Dessi, Claudia</creatorcontrib><creatorcontrib>Berezney, John P</creatorcontrib><creatorcontrib>Chen, Daniel T -N</creatorcontrib><creatorcontrib>Boros, Remi</creatorcontrib><creatorcontrib>Dogic, Zvonimir</creatorcontrib><creatorcontrib>Blair, Daniel L</creatorcontrib><title>Shear-induced gelation of self-yielding active networks</title><title>arXiv.org</title><description>Molecular-motor generated active stresses drive the cytoskeleton away from equilibrium, endowing it with tunable mechanical properties that are essential for diverse functions such as cell division and motility[1-5]. Designing analogous biomimetic systems is a key prerequisite for creating active matter that can emulate cellular functions[6-7]. These long-term goals requires understanding of how motor-generated stresses tune the mechanics of filamentous networks[8-11]. In microtubule-based active matter, kinesin motors generate extensile motion that leads to persistent breaking and reforming of the network links[12]. We study how such microscopic dynamics modifies the network's mechanical properties, uncovering that the network viscosity first increases with the imposed shear rate before transitioning back to a low-viscosity state. The non-monotonic shear-dependent viscosity can be controlled by tuning the speed of molecular motors. A two-state phenomenological model that incorporates liquid- and solid-like elements quantitatively relates the non-monotonic shear-rate-dependent viscosity to locally-measured flows. These studies show that rheology of extensile networks are different from previously studied active gels[13], where contractility enhances mechanical stiffness. Moreover, the flow induced gelation is not captured by continuum models of hydrodynamically interacting swimmers[14-21]. Observation of activity-dependent viscoelasticity necessitates the development of models for self-yielding of soft active solids whose intrinsic active stresses fluidize or stiffen the network.</description><subject>Biomimetics</subject><subject>Cell division</subject><subject>Continuum modeling</subject><subject>Dynamic mechanical properties</subject><subject>Fluidizing</subject><subject>Gelation</subject><subject>Gels</subject><subject>Mechanical properties</subject><subject>Molecular motors</subject><subject>Networks</subject><subject>Reforming</subject><subject>Rheological properties</subject><subject>Rheology</subject><subject>Shear rate</subject><subject>Stiffness</subject><subject>Stresses</subject><subject>Viscoelasticity</subject><subject>Viscosity</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNotjV1LwzAUQIMgOOZ-gG8Fn1Nvbm6a5lGGXzDwwb2PtLmZmaXVpp367x24p_NyOEeIGwUl1cbAnR9_0rFEACrBaq0uxAJPkDUhXolVzgcAwMqiMXoh7Ns7-1GmPswth2LPnZ_S0BdDLDJ3Uf4m7kLq94Vvp3Tkoufpexg_8rW4jL7LvDpzKbaPD9v1s9y8Pr2s7zfSGyRZo2uCs1yRsbrV7KkxdYxglHcqICkTLFQ1QXDGcWRloELrakWN1k4ZvRS3_9nPcfiaOU-7wzCP_em4w5MAqIlI_wEiQEYs</recordid><startdate>20200429</startdate><enddate>20200429</enddate><creator>Gagnon, David A</creator><creator>Dessi, Claudia</creator><creator>Berezney, John P</creator><creator>Chen, Daniel T -N</creator><creator>Boros, Remi</creator><creator>Dogic, Zvonimir</creator><creator>Blair, Daniel L</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200429</creationdate><title>Shear-induced gelation of self-yielding active networks</title><author>Gagnon, David A ; Dessi, Claudia ; Berezney, John P ; Chen, Daniel T -N ; Boros, Remi ; Dogic, Zvonimir ; Blair, Daniel L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a524-829bd97e64573c3ea4b58ff051a91d2415d706840d959efe1506279814b339153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Biomimetics</topic><topic>Cell division</topic><topic>Continuum modeling</topic><topic>Dynamic mechanical properties</topic><topic>Fluidizing</topic><topic>Gelation</topic><topic>Gels</topic><topic>Mechanical properties</topic><topic>Molecular motors</topic><topic>Networks</topic><topic>Reforming</topic><topic>Rheological properties</topic><topic>Rheology</topic><topic>Shear rate</topic><topic>Stiffness</topic><topic>Stresses</topic><topic>Viscoelasticity</topic><topic>Viscosity</topic><toplevel>online_resources</toplevel><creatorcontrib>Gagnon, David A</creatorcontrib><creatorcontrib>Dessi, Claudia</creatorcontrib><creatorcontrib>Berezney, John P</creatorcontrib><creatorcontrib>Chen, Daniel T -N</creatorcontrib><creatorcontrib>Boros, Remi</creatorcontrib><creatorcontrib>Dogic, Zvonimir</creatorcontrib><creatorcontrib>Blair, Daniel L</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><jtitle>arXiv.org</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gagnon, David A</au><au>Dessi, Claudia</au><au>Berezney, John P</au><au>Chen, Daniel T -N</au><au>Boros, Remi</au><au>Dogic, Zvonimir</au><au>Blair, Daniel L</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shear-induced gelation of self-yielding active networks</atitle><jtitle>arXiv.org</jtitle><date>2020-04-29</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>Molecular-motor generated active stresses drive the cytoskeleton away from equilibrium, endowing it with tunable mechanical properties that are essential for diverse functions such as cell division and motility[1-5]. Designing analogous biomimetic systems is a key prerequisite for creating active matter that can emulate cellular functions[6-7]. These long-term goals requires understanding of how motor-generated stresses tune the mechanics of filamentous networks[8-11]. In microtubule-based active matter, kinesin motors generate extensile motion that leads to persistent breaking and reforming of the network links[12]. We study how such microscopic dynamics modifies the network's mechanical properties, uncovering that the network viscosity first increases with the imposed shear rate before transitioning back to a low-viscosity state. The non-monotonic shear-dependent viscosity can be controlled by tuning the speed of molecular motors. A two-state phenomenological model that incorporates liquid- and solid-like elements quantitatively relates the non-monotonic shear-rate-dependent viscosity to locally-measured flows. These studies show that rheology of extensile networks are different from previously studied active gels[13], where contractility enhances mechanical stiffness. Moreover, the flow induced gelation is not captured by continuum models of hydrodynamically interacting swimmers[14-21]. Observation of activity-dependent viscoelasticity necessitates the development of models for self-yielding of soft active solids whose intrinsic active stresses fluidize or stiffen the network.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2004.07331</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2020-04 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2391023444 |
source | Publicly Available Content Database |
subjects | Biomimetics Cell division Continuum modeling Dynamic mechanical properties Fluidizing Gelation Gels Mechanical properties Molecular motors Networks Reforming Rheological properties Rheology Shear rate Stiffness Stresses Viscoelasticity Viscosity |
title | Shear-induced gelation of self-yielding active networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A09%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shear-induced%20gelation%20of%20self-yielding%20active%20networks&rft.jtitle=arXiv.org&rft.au=Gagnon,%20David%20A&rft.date=2020-04-29&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2004.07331&rft_dat=%3Cproquest%3E2391023444%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a524-829bd97e64573c3ea4b58ff051a91d2415d706840d959efe1506279814b339153%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2391023444&rft_id=info:pmid/&rfr_iscdi=true |