Loading…
Improved evolutionary algorithm for parallel batch processing machine scheduling in additive manufacturing
With the increasing prosperity of additive manufacturing, the 3D-printing shop scheduling problem has presented growing importance. The scheduling of such a shop is imperative for saving time and cost, but the problem is hard to solve, especially for simultaneous multi-part assignment and placement....
Saved in:
Published in: | International journal of production research 2020-04, Vol.58 (8), p.2263-2282 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | With the increasing prosperity of additive manufacturing, the 3D-printing shop scheduling problem has presented growing importance. The scheduling of such a shop is imperative for saving time and cost, but the problem is hard to solve, especially for simultaneous multi-part assignment and placement. This paper develops an improved evolutionary algorithm for application to additive manufacturing, by combining a genetic algorithm with a heuristic placement strategy to take into account the allocation and placement of parts integrally. The algorithm is designed also to enhance the optimisation efficiency by introducing an initialisation method based on the characteristics of the 3D printing process through the development of corresponding time calculation model. Experiments show that the developed algorithm can find better solutions compared with state-of-the-art algorithms such as simple genetic algorithm, particle swarm optimisation and heuristic algorithms. |
---|---|
ISSN: | 0020-7543 1366-588X |
DOI: | 10.1080/00207543.2019.1617447 |