Loading…

Deep Domain Adaptation With Differential Privacy

Nowadays, it usually requires a massive amount of labeled data to train a deep neural network. When no labeled data is available in some application scenarios, domain adaption can be employed to transfer a learner from one or more source domains with labeled data to a target domain with unlabeled da...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on information forensics and security 2020, Vol.15, p.3093-3106
Main Authors: Wang, Qian, Li, Zixi, Zou, Qin, Zhao, Lingchen, Wang, Song
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-27ef5fc4892e3e09c29b3a15719436b7d2d123dda94e002e9587994c4801130d3
cites cdi_FETCH-LOGICAL-c293t-27ef5fc4892e3e09c29b3a15719436b7d2d123dda94e002e9587994c4801130d3
container_end_page 3106
container_issue
container_start_page 3093
container_title IEEE transactions on information forensics and security
container_volume 15
creator Wang, Qian
Li, Zixi
Zou, Qin
Zhao, Lingchen
Wang, Song
description Nowadays, it usually requires a massive amount of labeled data to train a deep neural network. When no labeled data is available in some application scenarios, domain adaption can be employed to transfer a learner from one or more source domains with labeled data to a target domain with unlabeled data. However, due to the exposure of the trained model to the target domain, the user privacy may potentially be compromised. Nevertheless, the private information may be encoded into the representations in different stages of the deep neural networks, i.e., hierarchical convolutional feature maps, which poses a great challenge for a full-fledged privacy protection. In this paper, we propose a novel differentially private domain adaptation framework called DPDA to achieve domain adaptation with privacy assurance. Specifically, we perform domain adaptation in an adversarial-learning manner and embed the differentially private design into specific layers and learning processes. Although applying differential privacy techniques directly will undermine the performance of deep neural networks, DPDA can increase the classification accuracy for the unlabeled target data compared to the prior arts. We conduct extensive experiments on standard benchmark datasets, and the results show that our proposed DPDA can indeed achieve high accuracy in many domain adaptation tasks with only a modest privacy loss.
doi_str_mv 10.1109/TIFS.2020.2983254
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2391261656</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9046810</ieee_id><sourcerecordid>2391261656</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-27ef5fc4892e3e09c29b3a15719436b7d2d123dda94e002e9587994c4801130d3</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE6c2a9kj6W1WigoWPG4bJMJbmmTuEmF_vumpPQ0L8PzzsDD2CNCggjmZbWYfyUcOCTcZIIrecVGqJSONXC8vmQUt-yubTcAUqLORgxmRE00q3fOV9GkcE3nOl9X0Y_vfqOZL0sKVHXebaPP4P9dfrhnN6XbtvRwnmP2PX9dTd_j5cfbYjpZxjk3oot5SqUqc5kZToLA9Nu1cKhSNFLodVrwArkoCmckAXAyKkuNkX0BEAUUYsyeh7tNqP_21HZ2U-9D1b-0XBjkGrXSPYUDlYe6bQOVtgl-58LBItiTGHsSY09i7FlM33kaOp6ILrwBqTMEcQRVzFxH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391261656</pqid></control><display><type>article</type><title>Deep Domain Adaptation With Differential Privacy</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wang, Qian ; Li, Zixi ; Zou, Qin ; Zhao, Lingchen ; Wang, Song</creator><creatorcontrib>Wang, Qian ; Li, Zixi ; Zou, Qin ; Zhao, Lingchen ; Wang, Song</creatorcontrib><description>Nowadays, it usually requires a massive amount of labeled data to train a deep neural network. When no labeled data is available in some application scenarios, domain adaption can be employed to transfer a learner from one or more source domains with labeled data to a target domain with unlabeled data. However, due to the exposure of the trained model to the target domain, the user privacy may potentially be compromised. Nevertheless, the private information may be encoded into the representations in different stages of the deep neural networks, i.e., hierarchical convolutional feature maps, which poses a great challenge for a full-fledged privacy protection. In this paper, we propose a novel differentially private domain adaptation framework called DPDA to achieve domain adaptation with privacy assurance. Specifically, we perform domain adaptation in an adversarial-learning manner and embed the differentially private design into specific layers and learning processes. Although applying differential privacy techniques directly will undermine the performance of deep neural networks, DPDA can increase the classification accuracy for the unlabeled target data compared to the prior arts. We conduct extensive experiments on standard benchmark datasets, and the results show that our proposed DPDA can indeed achieve high accuracy in many domain adaptation tasks with only a modest privacy loss.</description><identifier>ISSN: 1556-6013</identifier><identifier>EISSN: 1556-6021</identifier><identifier>DOI: 10.1109/TIFS.2020.2983254</identifier><identifier>CODEN: ITIFA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Adaptation ; Adaptation models ; Artificial neural networks ; convolutional neural network ; Data models ; deep learning ; Differential privacy ; Domain adaptation ; Domains ; Feature maps ; Machine learning ; Neural networks ; Privacy ; privacy preservation ; Training ; Training data</subject><ispartof>IEEE transactions on information forensics and security, 2020, Vol.15, p.3093-3106</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-27ef5fc4892e3e09c29b3a15719436b7d2d123dda94e002e9587994c4801130d3</citedby><cites>FETCH-LOGICAL-c293t-27ef5fc4892e3e09c29b3a15719436b7d2d123dda94e002e9587994c4801130d3</cites><orcidid>0000-0003-4152-5295 ; 0000-0002-8967-8525 ; 0000-0001-7955-0782</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9046810$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Li, Zixi</creatorcontrib><creatorcontrib>Zou, Qin</creatorcontrib><creatorcontrib>Zhao, Lingchen</creatorcontrib><creatorcontrib>Wang, Song</creatorcontrib><title>Deep Domain Adaptation With Differential Privacy</title><title>IEEE transactions on information forensics and security</title><addtitle>TIFS</addtitle><description>Nowadays, it usually requires a massive amount of labeled data to train a deep neural network. When no labeled data is available in some application scenarios, domain adaption can be employed to transfer a learner from one or more source domains with labeled data to a target domain with unlabeled data. However, due to the exposure of the trained model to the target domain, the user privacy may potentially be compromised. Nevertheless, the private information may be encoded into the representations in different stages of the deep neural networks, i.e., hierarchical convolutional feature maps, which poses a great challenge for a full-fledged privacy protection. In this paper, we propose a novel differentially private domain adaptation framework called DPDA to achieve domain adaptation with privacy assurance. Specifically, we perform domain adaptation in an adversarial-learning manner and embed the differentially private design into specific layers and learning processes. Although applying differential privacy techniques directly will undermine the performance of deep neural networks, DPDA can increase the classification accuracy for the unlabeled target data compared to the prior arts. We conduct extensive experiments on standard benchmark datasets, and the results show that our proposed DPDA can indeed achieve high accuracy in many domain adaptation tasks with only a modest privacy loss.</description><subject>Adaptation</subject><subject>Adaptation models</subject><subject>Artificial neural networks</subject><subject>convolutional neural network</subject><subject>Data models</subject><subject>deep learning</subject><subject>Differential privacy</subject><subject>Domain adaptation</subject><subject>Domains</subject><subject>Feature maps</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Privacy</subject><subject>privacy preservation</subject><subject>Training</subject><subject>Training data</subject><issn>1556-6013</issn><issn>1556-6021</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNo9kE1Lw0AQhhdRsFZ_gHgJeE6c2a9kj6W1WigoWPG4bJMJbmmTuEmF_vumpPQ0L8PzzsDD2CNCggjmZbWYfyUcOCTcZIIrecVGqJSONXC8vmQUt-yubTcAUqLORgxmRE00q3fOV9GkcE3nOl9X0Y_vfqOZL0sKVHXebaPP4P9dfrhnN6XbtvRwnmP2PX9dTd_j5cfbYjpZxjk3oot5SqUqc5kZToLA9Nu1cKhSNFLodVrwArkoCmckAXAyKkuNkX0BEAUUYsyeh7tNqP_21HZ2U-9D1b-0XBjkGrXSPYUDlYe6bQOVtgl-58LBItiTGHsSY09i7FlM33kaOp6ILrwBqTMEcQRVzFxH</recordid><startdate>2020</startdate><enddate>2020</enddate><creator>Wang, Qian</creator><creator>Li, Zixi</creator><creator>Zou, Qin</creator><creator>Zhao, Lingchen</creator><creator>Wang, Song</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-4152-5295</orcidid><orcidid>https://orcid.org/0000-0002-8967-8525</orcidid><orcidid>https://orcid.org/0000-0001-7955-0782</orcidid></search><sort><creationdate>2020</creationdate><title>Deep Domain Adaptation With Differential Privacy</title><author>Wang, Qian ; Li, Zixi ; Zou, Qin ; Zhao, Lingchen ; Wang, Song</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-27ef5fc4892e3e09c29b3a15719436b7d2d123dda94e002e9587994c4801130d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation</topic><topic>Adaptation models</topic><topic>Artificial neural networks</topic><topic>convolutional neural network</topic><topic>Data models</topic><topic>deep learning</topic><topic>Differential privacy</topic><topic>Domain adaptation</topic><topic>Domains</topic><topic>Feature maps</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Privacy</topic><topic>privacy preservation</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qian</creatorcontrib><creatorcontrib>Li, Zixi</creatorcontrib><creatorcontrib>Zou, Qin</creatorcontrib><creatorcontrib>Zhao, Lingchen</creatorcontrib><creatorcontrib>Wang, Song</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information forensics and security</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qian</au><au>Li, Zixi</au><au>Zou, Qin</au><au>Zhao, Lingchen</au><au>Wang, Song</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Deep Domain Adaptation With Differential Privacy</atitle><jtitle>IEEE transactions on information forensics and security</jtitle><stitle>TIFS</stitle><date>2020</date><risdate>2020</risdate><volume>15</volume><spage>3093</spage><epage>3106</epage><pages>3093-3106</pages><issn>1556-6013</issn><eissn>1556-6021</eissn><coden>ITIFA6</coden><abstract>Nowadays, it usually requires a massive amount of labeled data to train a deep neural network. When no labeled data is available in some application scenarios, domain adaption can be employed to transfer a learner from one or more source domains with labeled data to a target domain with unlabeled data. However, due to the exposure of the trained model to the target domain, the user privacy may potentially be compromised. Nevertheless, the private information may be encoded into the representations in different stages of the deep neural networks, i.e., hierarchical convolutional feature maps, which poses a great challenge for a full-fledged privacy protection. In this paper, we propose a novel differentially private domain adaptation framework called DPDA to achieve domain adaptation with privacy assurance. Specifically, we perform domain adaptation in an adversarial-learning manner and embed the differentially private design into specific layers and learning processes. Although applying differential privacy techniques directly will undermine the performance of deep neural networks, DPDA can increase the classification accuracy for the unlabeled target data compared to the prior arts. We conduct extensive experiments on standard benchmark datasets, and the results show that our proposed DPDA can indeed achieve high accuracy in many domain adaptation tasks with only a modest privacy loss.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIFS.2020.2983254</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-4152-5295</orcidid><orcidid>https://orcid.org/0000-0002-8967-8525</orcidid><orcidid>https://orcid.org/0000-0001-7955-0782</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1556-6013
ispartof IEEE transactions on information forensics and security, 2020, Vol.15, p.3093-3106
issn 1556-6013
1556-6021
language eng
recordid cdi_proquest_journals_2391261656
source IEEE Electronic Library (IEL) Journals
subjects Adaptation
Adaptation models
Artificial neural networks
convolutional neural network
Data models
deep learning
Differential privacy
Domain adaptation
Domains
Feature maps
Machine learning
Neural networks
Privacy
privacy preservation
Training
Training data
title Deep Domain Adaptation With Differential Privacy
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A30%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Deep%20Domain%20Adaptation%20With%20Differential%20Privacy&rft.jtitle=IEEE%20transactions%20on%20information%20forensics%20and%20security&rft.au=Wang,%20Qian&rft.date=2020&rft.volume=15&rft.spage=3093&rft.epage=3106&rft.pages=3093-3106&rft.issn=1556-6013&rft.eissn=1556-6021&rft.coden=ITIFA6&rft_id=info:doi/10.1109/TIFS.2020.2983254&rft_dat=%3Cproquest_ieee_%3E2391261656%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-27ef5fc4892e3e09c29b3a15719436b7d2d123dda94e002e9587994c4801130d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2391261656&rft_id=info:pmid/&rft_ieee_id=9046810&rfr_iscdi=true