Loading…

Weather Radar Network Benefit Model for Flash Flood Casualty Reduction

A monetized flash flood casualty reduction benefit model is constructed for application to meteorological radar networks. Geospatial regression analyses show that better radar coverage of the causative rainfall improves flash flood warning performance. Enhanced flash flood warning performance is sho...

Full description

Saved in:
Bibliographic Details
Published in:Journal of applied meteorology and climatology 2020-04, Vol.59 (4), p.589-604
Main Authors: Cho, John Y. N., Kurdzo, James M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A monetized flash flood casualty reduction benefit model is constructed for application to meteorological radar networks. Geospatial regression analyses show that better radar coverage of the causative rainfall improves flash flood warning performance. Enhanced flash flood warning performance is shown to decrease casualty rates. Consequently, these two effects in combination allow a model to be formed that links radar coverage to flash flood casualty rates. When this model is applied to the present-day contiguous U.S. weather radar network, results yield a flash flood–based benefit of $316 million (M) yr−1. The remaining benefit pools are more modest ($13 M yr−1 for coverage improvement and $69 M yr−1 maximum for all areas of radar quantitative precipitation estimation improvements), indicative of the existing weather radar network’s effectiveness in supporting the flash flood warning decision process.
ISSN:1558-8424
1558-8432
DOI:10.1175/JAMC-D-19-0176.1