Loading…
An improved weight-constrained neural network training algorithm
In this work, we propose an improved weight-constrained neural network training algorithm, named iWCNN. The proposed algorithm exploits the numerical efficiency of the L-BFGS matrices together with a gradient-projection strategy for handling the bounds on the weights. Additionally, an attractive pro...
Saved in:
Published in: | Neural computing & applications 2020-05, Vol.32 (9), p.4177-4185 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c319t-7528d957b349eeb5a280b109c8ae9ac9ed020adbc91f776cc70ecbb2d07eb2843 |
---|---|
cites | cdi_FETCH-LOGICAL-c319t-7528d957b349eeb5a280b109c8ae9ac9ed020adbc91f776cc70ecbb2d07eb2843 |
container_end_page | 4185 |
container_issue | 9 |
container_start_page | 4177 |
container_title | Neural computing & applications |
container_volume | 32 |
creator | Livieris, Ioannis E. Pintelas, Panagiotis |
description | In this work, we propose an improved weight-constrained neural network training algorithm, named iWCNN. The proposed algorithm exploits the numerical efficiency of the L-BFGS matrices together with a gradient-projection strategy for handling the bounds on the weights. Additionally, an attractive property of iWCNN is that it utilizes a new scaling factor for defining the initial Hessian approximation used in the L-BFGS formula. Since the L-BFGS Hessian approximation is defined utilizing a small number of correction vector pairs, our motivation is to further exploit them in order to increase the efficiency of the training algorithm and the convergence rate of the minimization process. The preliminary numerical experiments provide empirical evidence that the proposed training algorithm accelerates the training process. |
doi_str_mv | 10.1007/s00521-019-04342-2 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2391791846</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2391791846</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-7528d957b349eeb5a280b109c8ae9ac9ed020adbc91f776cc70ecbb2d07eb2843</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC5-jkz26Sm6VoFQpe9BySbLrd2mZrsmvx2xu7gjdPA2_eezP8ELomcEsAxF0CKCnBQBQGzjjF9ARNCGcMMyjlKZqA4nldcXaOLlLaAACvZDlB97NQtLt97D59XRx826x77LqQ-mjakKXgh2i2efSHLr4XR7kNTWG2TRfbfr27RGcrs03-6ndO0dvjw-v8CS9fFs_z2RI7RlSPRUllrUphGVfe29JQCZaActJ4ZZzyNVAwtXWKrISonBPgnbW0BuEtlZxN0c3Ym3_9GHzq9aYbYsgnNWWKCEUkr7KLji4Xu5SiX-l9bHcmfmkC-oeUHknpTEofSeX0FLExlLI5ND7-Vf-T-gb3DGxV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2391791846</pqid></control><display><type>article</type><title>An improved weight-constrained neural network training algorithm</title><source>Springer Nature</source><creator>Livieris, Ioannis E. ; Pintelas, Panagiotis</creator><creatorcontrib>Livieris, Ioannis E. ; Pintelas, Panagiotis</creatorcontrib><description>In this work, we propose an improved weight-constrained neural network training algorithm, named iWCNN. The proposed algorithm exploits the numerical efficiency of the L-BFGS matrices together with a gradient-projection strategy for handling the bounds on the weights. Additionally, an attractive property of iWCNN is that it utilizes a new scaling factor for defining the initial Hessian approximation used in the L-BFGS formula. Since the L-BFGS Hessian approximation is defined utilizing a small number of correction vector pairs, our motivation is to further exploit them in order to increase the efficiency of the training algorithm and the convergence rate of the minimization process. The preliminary numerical experiments provide empirical evidence that the proposed training algorithm accelerates the training process.</description><identifier>ISSN: 0941-0643</identifier><identifier>EISSN: 1433-3058</identifier><identifier>DOI: 10.1007/s00521-019-04342-2</identifier><language>eng</language><publisher>London: Springer London</publisher><subject>Algorithms ; Approximation ; Artificial Intelligence ; Computational Biology/Bioinformatics ; Computational Science and Engineering ; Computer Science ; Data Mining and Knowledge Discovery ; Emerging Trends of Applied Neural Computation - E_TRAINCO ; Image Processing and Computer Vision ; Mathematical analysis ; Neural networks ; Probability and Statistics in Computer Science ; Scaling factors ; Weight</subject><ispartof>Neural computing & applications, 2020-05, Vol.32 (9), p.4177-4185</ispartof><rights>Springer-Verlag London Ltd., part of Springer Nature 2019</rights><rights>Springer-Verlag London Ltd., part of Springer Nature 2019.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-7528d957b349eeb5a280b109c8ae9ac9ed020adbc91f776cc70ecbb2d07eb2843</citedby><cites>FETCH-LOGICAL-c319t-7528d957b349eeb5a280b109c8ae9ac9ed020adbc91f776cc70ecbb2d07eb2843</cites><orcidid>0000-0002-3996-3301</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Livieris, Ioannis E.</creatorcontrib><creatorcontrib>Pintelas, Panagiotis</creatorcontrib><title>An improved weight-constrained neural network training algorithm</title><title>Neural computing & applications</title><addtitle>Neural Comput & Applic</addtitle><description>In this work, we propose an improved weight-constrained neural network training algorithm, named iWCNN. The proposed algorithm exploits the numerical efficiency of the L-BFGS matrices together with a gradient-projection strategy for handling the bounds on the weights. Additionally, an attractive property of iWCNN is that it utilizes a new scaling factor for defining the initial Hessian approximation used in the L-BFGS formula. Since the L-BFGS Hessian approximation is defined utilizing a small number of correction vector pairs, our motivation is to further exploit them in order to increase the efficiency of the training algorithm and the convergence rate of the minimization process. The preliminary numerical experiments provide empirical evidence that the proposed training algorithm accelerates the training process.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Artificial Intelligence</subject><subject>Computational Biology/Bioinformatics</subject><subject>Computational Science and Engineering</subject><subject>Computer Science</subject><subject>Data Mining and Knowledge Discovery</subject><subject>Emerging Trends of Applied Neural Computation - E_TRAINCO</subject><subject>Image Processing and Computer Vision</subject><subject>Mathematical analysis</subject><subject>Neural networks</subject><subject>Probability and Statistics in Computer Science</subject><subject>Scaling factors</subject><subject>Weight</subject><issn>0941-0643</issn><issn>1433-3058</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp9kE9LAzEQxYMoWKtfwNOC5-jkz26Sm6VoFQpe9BySbLrd2mZrsmvx2xu7gjdPA2_eezP8ELomcEsAxF0CKCnBQBQGzjjF9ARNCGcMMyjlKZqA4nldcXaOLlLaAACvZDlB97NQtLt97D59XRx826x77LqQ-mjakKXgh2i2efSHLr4XR7kNTWG2TRfbfr27RGcrs03-6ndO0dvjw-v8CS9fFs_z2RI7RlSPRUllrUphGVfe29JQCZaActJ4ZZzyNVAwtXWKrISonBPgnbW0BuEtlZxN0c3Ym3_9GHzq9aYbYsgnNWWKCEUkr7KLji4Xu5SiX-l9bHcmfmkC-oeUHknpTEofSeX0FLExlLI5ND7-Vf-T-gb3DGxV</recordid><startdate>20200501</startdate><enddate>20200501</enddate><creator>Livieris, Ioannis E.</creator><creator>Pintelas, Panagiotis</creator><general>Springer London</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-3996-3301</orcidid></search><sort><creationdate>20200501</creationdate><title>An improved weight-constrained neural network training algorithm</title><author>Livieris, Ioannis E. ; Pintelas, Panagiotis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-7528d957b349eeb5a280b109c8ae9ac9ed020adbc91f776cc70ecbb2d07eb2843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Artificial Intelligence</topic><topic>Computational Biology/Bioinformatics</topic><topic>Computational Science and Engineering</topic><topic>Computer Science</topic><topic>Data Mining and Knowledge Discovery</topic><topic>Emerging Trends of Applied Neural Computation - E_TRAINCO</topic><topic>Image Processing and Computer Vision</topic><topic>Mathematical analysis</topic><topic>Neural networks</topic><topic>Probability and Statistics in Computer Science</topic><topic>Scaling factors</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Livieris, Ioannis E.</creatorcontrib><creatorcontrib>Pintelas, Panagiotis</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Neural computing & applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Livieris, Ioannis E.</au><au>Pintelas, Panagiotis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An improved weight-constrained neural network training algorithm</atitle><jtitle>Neural computing & applications</jtitle><stitle>Neural Comput & Applic</stitle><date>2020-05-01</date><risdate>2020</risdate><volume>32</volume><issue>9</issue><spage>4177</spage><epage>4185</epage><pages>4177-4185</pages><issn>0941-0643</issn><eissn>1433-3058</eissn><abstract>In this work, we propose an improved weight-constrained neural network training algorithm, named iWCNN. The proposed algorithm exploits the numerical efficiency of the L-BFGS matrices together with a gradient-projection strategy for handling the bounds on the weights. Additionally, an attractive property of iWCNN is that it utilizes a new scaling factor for defining the initial Hessian approximation used in the L-BFGS formula. Since the L-BFGS Hessian approximation is defined utilizing a small number of correction vector pairs, our motivation is to further exploit them in order to increase the efficiency of the training algorithm and the convergence rate of the minimization process. The preliminary numerical experiments provide empirical evidence that the proposed training algorithm accelerates the training process.</abstract><cop>London</cop><pub>Springer London</pub><doi>10.1007/s00521-019-04342-2</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3996-3301</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0941-0643 |
ispartof | Neural computing & applications, 2020-05, Vol.32 (9), p.4177-4185 |
issn | 0941-0643 1433-3058 |
language | eng |
recordid | cdi_proquest_journals_2391791846 |
source | Springer Nature |
subjects | Algorithms Approximation Artificial Intelligence Computational Biology/Bioinformatics Computational Science and Engineering Computer Science Data Mining and Knowledge Discovery Emerging Trends of Applied Neural Computation - E_TRAINCO Image Processing and Computer Vision Mathematical analysis Neural networks Probability and Statistics in Computer Science Scaling factors Weight |
title | An improved weight-constrained neural network training algorithm |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A24%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20improved%20weight-constrained%20neural%20network%20training%20algorithm&rft.jtitle=Neural%20computing%20&%20applications&rft.au=Livieris,%20Ioannis%20E.&rft.date=2020-05-01&rft.volume=32&rft.issue=9&rft.spage=4177&rft.epage=4185&rft.pages=4177-4185&rft.issn=0941-0643&rft.eissn=1433-3058&rft_id=info:doi/10.1007/s00521-019-04342-2&rft_dat=%3Cproquest_cross%3E2391791846%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c319t-7528d957b349eeb5a280b109c8ae9ac9ed020adbc91f776cc70ecbb2d07eb2843%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2391791846&rft_id=info:pmid/&rfr_iscdi=true |