Loading…

Catalytic Oxidation of Methylene Blue by Use of Natural Zeolite-Based Silver and Magnetite Nanocomposites

This work reports the synthesis of natural zeolite-based silver and magnetite nanocomposites and their application for the catalytic oxidation of methylene blue in water. The zeolite was impregnated with 5.5 wt.% Fe in the form of magnetite nanoparticles with size of 32 nm, and with 6.4 wt.% Ag in t...

Full description

Saved in:
Bibliographic Details
Published in:Processes 2020-04, Vol.8 (4), p.471
Main Authors: Kuntubek, Aldiyar, Kinayat, Nurassyl, Meiramkulova, Kulyash, Poulopoulos, Stavros G., Bear, Joseph C., Inglezakis, Vassilis J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c292t-9a8aa855bc0249fee61ecaec02c09b911f4e90a160017e5d2bb7c071575d98143
cites cdi_FETCH-LOGICAL-c292t-9a8aa855bc0249fee61ecaec02c09b911f4e90a160017e5d2bb7c071575d98143
container_end_page
container_issue 4
container_start_page 471
container_title Processes
container_volume 8
creator Kuntubek, Aldiyar
Kinayat, Nurassyl
Meiramkulova, Kulyash
Poulopoulos, Stavros G.
Bear, Joseph C.
Inglezakis, Vassilis J.
description This work reports the synthesis of natural zeolite-based silver and magnetite nanocomposites and their application for the catalytic oxidation of methylene blue in water. The zeolite was impregnated with 5.5 wt.% Fe in the form of magnetite nanoparticles with size of 32 nm, and with 6.4 wt.% Ag in the form of silver oxide and metallic silver nanoparticles with sizes of 42 and 20 nm, respectively. The results showed that physical adsorption contributed to the removal of methylene blue by 25–36% and that Fe3O4@NZU is superior to Ag2O@NZU and Ag0@NZU, leading to 55% removal without oxidant and 97% in the presence of H2O2. However, there is no evidence of significant mineralization of methylene blue. The application of reaction rate models showed that the reaction order changes from zero to first and second order depending on the H2O2 concentration.
doi_str_mv 10.3390/pr8040471
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2392184454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2392184454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-9a8aa855bc0249fee61ecaec02c09b911f4e90a160017e5d2bb7c071575d98143</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EElXpgTewxIlDwHbsOj7Sij-p0AP0wiXaOBtIlcbBdhB5e1IVIfayO5pPO9IQcs7ZVZoadt35jEkmNT8iEyGETozm-vjffUpmIWzZOIanmZpPSL2ECM0Qa0vX33UJsXYtdRV9wvgxNNgiXTQ90mKgm4B74xli76Ghb-iaOmKygIAlfambL_QU2pI-wXuLcbRGtHXW7ToXRhXOyEkFTcDZ756Szd3t6_IhWa3vH5c3q8QKI2JiIAPIlCosE9JUiHOOFnBUlpnCcF5JNAz4nDGuUZWiKLRlmiutSpNxmU7JxeFv591njyHmW9f7dozMRWoEz6RUe-ryQFnvQvBY5Z2vd-CHnLN8X2b-V2b6AxMzZtc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2392184454</pqid></control><display><type>article</type><title>Catalytic Oxidation of Methylene Blue by Use of Natural Zeolite-Based Silver and Magnetite Nanocomposites</title><source>Publicly Available Content (ProQuest)</source><creator>Kuntubek, Aldiyar ; Kinayat, Nurassyl ; Meiramkulova, Kulyash ; Poulopoulos, Stavros G. ; Bear, Joseph C. ; Inglezakis, Vassilis J.</creator><creatorcontrib>Kuntubek, Aldiyar ; Kinayat, Nurassyl ; Meiramkulova, Kulyash ; Poulopoulos, Stavros G. ; Bear, Joseph C. ; Inglezakis, Vassilis J.</creatorcontrib><description>This work reports the synthesis of natural zeolite-based silver and magnetite nanocomposites and their application for the catalytic oxidation of methylene blue in water. The zeolite was impregnated with 5.5 wt.% Fe in the form of magnetite nanoparticles with size of 32 nm, and with 6.4 wt.% Ag in the form of silver oxide and metallic silver nanoparticles with sizes of 42 and 20 nm, respectively. The results showed that physical adsorption contributed to the removal of methylene blue by 25–36% and that Fe3O4@NZU is superior to Ag2O@NZU and Ag0@NZU, leading to 55% removal without oxidant and 97% in the presence of H2O2. However, there is no evidence of significant mineralization of methylene blue. The application of reaction rate models showed that the reaction order changes from zero to first and second order depending on the H2O2 concentration.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr8040471</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adsorption ; Catalytic oxidation ; Dyes ; Efficiency ; Hydrogen peroxide ; Iron oxides ; Magnetite ; Methylene blue ; Mineralization ; Nanocomposites ; Nanoparticles ; Oxidants ; Oxidation ; Oxidizing agents ; Scanning electron microscopy ; Silver ; Spectrum analysis ; Zeolites</subject><ispartof>Processes, 2020-04, Vol.8 (4), p.471</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-9a8aa855bc0249fee61ecaec02c09b911f4e90a160017e5d2bb7c071575d98143</citedby><cites>FETCH-LOGICAL-c292t-9a8aa855bc0249fee61ecaec02c09b911f4e90a160017e5d2bb7c071575d98143</cites><orcidid>0000-0002-0195-0417 ; 0000-0001-7010-855X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2392184454/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2392184454?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Kuntubek, Aldiyar</creatorcontrib><creatorcontrib>Kinayat, Nurassyl</creatorcontrib><creatorcontrib>Meiramkulova, Kulyash</creatorcontrib><creatorcontrib>Poulopoulos, Stavros G.</creatorcontrib><creatorcontrib>Bear, Joseph C.</creatorcontrib><creatorcontrib>Inglezakis, Vassilis J.</creatorcontrib><title>Catalytic Oxidation of Methylene Blue by Use of Natural Zeolite-Based Silver and Magnetite Nanocomposites</title><title>Processes</title><description>This work reports the synthesis of natural zeolite-based silver and magnetite nanocomposites and their application for the catalytic oxidation of methylene blue in water. The zeolite was impregnated with 5.5 wt.% Fe in the form of magnetite nanoparticles with size of 32 nm, and with 6.4 wt.% Ag in the form of silver oxide and metallic silver nanoparticles with sizes of 42 and 20 nm, respectively. The results showed that physical adsorption contributed to the removal of methylene blue by 25–36% and that Fe3O4@NZU is superior to Ag2O@NZU and Ag0@NZU, leading to 55% removal without oxidant and 97% in the presence of H2O2. However, there is no evidence of significant mineralization of methylene blue. The application of reaction rate models showed that the reaction order changes from zero to first and second order depending on the H2O2 concentration.</description><subject>Adsorption</subject><subject>Catalytic oxidation</subject><subject>Dyes</subject><subject>Efficiency</subject><subject>Hydrogen peroxide</subject><subject>Iron oxides</subject><subject>Magnetite</subject><subject>Methylene blue</subject><subject>Mineralization</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Oxidants</subject><subject>Oxidation</subject><subject>Oxidizing agents</subject><subject>Scanning electron microscopy</subject><subject>Silver</subject><subject>Spectrum analysis</subject><subject>Zeolites</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNkM1OwzAQhC0EElXpgTewxIlDwHbsOj7Sij-p0AP0wiXaOBtIlcbBdhB5e1IVIfayO5pPO9IQcs7ZVZoadt35jEkmNT8iEyGETozm-vjffUpmIWzZOIanmZpPSL2ECM0Qa0vX33UJsXYtdRV9wvgxNNgiXTQ90mKgm4B74xli76Ghb-iaOmKygIAlfambL_QU2pI-wXuLcbRGtHXW7ToXRhXOyEkFTcDZ756Szd3t6_IhWa3vH5c3q8QKI2JiIAPIlCosE9JUiHOOFnBUlpnCcF5JNAz4nDGuUZWiKLRlmiutSpNxmU7JxeFv591njyHmW9f7dozMRWoEz6RUe-ryQFnvQvBY5Z2vd-CHnLN8X2b-V2b6AxMzZtc</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Kuntubek, Aldiyar</creator><creator>Kinayat, Nurassyl</creator><creator>Meiramkulova, Kulyash</creator><creator>Poulopoulos, Stavros G.</creator><creator>Bear, Joseph C.</creator><creator>Inglezakis, Vassilis J.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-0195-0417</orcidid><orcidid>https://orcid.org/0000-0001-7010-855X</orcidid></search><sort><creationdate>20200401</creationdate><title>Catalytic Oxidation of Methylene Blue by Use of Natural Zeolite-Based Silver and Magnetite Nanocomposites</title><author>Kuntubek, Aldiyar ; Kinayat, Nurassyl ; Meiramkulova, Kulyash ; Poulopoulos, Stavros G. ; Bear, Joseph C. ; Inglezakis, Vassilis J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-9a8aa855bc0249fee61ecaec02c09b911f4e90a160017e5d2bb7c071575d98143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Catalytic oxidation</topic><topic>Dyes</topic><topic>Efficiency</topic><topic>Hydrogen peroxide</topic><topic>Iron oxides</topic><topic>Magnetite</topic><topic>Methylene blue</topic><topic>Mineralization</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Oxidants</topic><topic>Oxidation</topic><topic>Oxidizing agents</topic><topic>Scanning electron microscopy</topic><topic>Silver</topic><topic>Spectrum analysis</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuntubek, Aldiyar</creatorcontrib><creatorcontrib>Kinayat, Nurassyl</creatorcontrib><creatorcontrib>Meiramkulova, Kulyash</creatorcontrib><creatorcontrib>Poulopoulos, Stavros G.</creatorcontrib><creatorcontrib>Bear, Joseph C.</creatorcontrib><creatorcontrib>Inglezakis, Vassilis J.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuntubek, Aldiyar</au><au>Kinayat, Nurassyl</au><au>Meiramkulova, Kulyash</au><au>Poulopoulos, Stavros G.</au><au>Bear, Joseph C.</au><au>Inglezakis, Vassilis J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic Oxidation of Methylene Blue by Use of Natural Zeolite-Based Silver and Magnetite Nanocomposites</atitle><jtitle>Processes</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>8</volume><issue>4</issue><spage>471</spage><pages>471-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>This work reports the synthesis of natural zeolite-based silver and magnetite nanocomposites and their application for the catalytic oxidation of methylene blue in water. The zeolite was impregnated with 5.5 wt.% Fe in the form of magnetite nanoparticles with size of 32 nm, and with 6.4 wt.% Ag in the form of silver oxide and metallic silver nanoparticles with sizes of 42 and 20 nm, respectively. The results showed that physical adsorption contributed to the removal of methylene blue by 25–36% and that Fe3O4@NZU is superior to Ag2O@NZU and Ag0@NZU, leading to 55% removal without oxidant and 97% in the presence of H2O2. However, there is no evidence of significant mineralization of methylene blue. The application of reaction rate models showed that the reaction order changes from zero to first and second order depending on the H2O2 concentration.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr8040471</doi><orcidid>https://orcid.org/0000-0002-0195-0417</orcidid><orcidid>https://orcid.org/0000-0001-7010-855X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2227-9717
ispartof Processes, 2020-04, Vol.8 (4), p.471
issn 2227-9717
2227-9717
language eng
recordid cdi_proquest_journals_2392184454
source Publicly Available Content (ProQuest)
subjects Adsorption
Catalytic oxidation
Dyes
Efficiency
Hydrogen peroxide
Iron oxides
Magnetite
Methylene blue
Mineralization
Nanocomposites
Nanoparticles
Oxidants
Oxidation
Oxidizing agents
Scanning electron microscopy
Silver
Spectrum analysis
Zeolites
title Catalytic Oxidation of Methylene Blue by Use of Natural Zeolite-Based Silver and Magnetite Nanocomposites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A46%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20Oxidation%20of%20Methylene%20Blue%20by%20Use%20of%20Natural%20Zeolite-Based%20Silver%20and%20Magnetite%20Nanocomposites&rft.jtitle=Processes&rft.au=Kuntubek,%20Aldiyar&rft.date=2020-04-01&rft.volume=8&rft.issue=4&rft.spage=471&rft.pages=471-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr8040471&rft_dat=%3Cproquest_cross%3E2392184454%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-9a8aa855bc0249fee61ecaec02c09b911f4e90a160017e5d2bb7c071575d98143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2392184454&rft_id=info:pmid/&rfr_iscdi=true