Loading…
Catalytic Oxidation of Methylene Blue by Use of Natural Zeolite-Based Silver and Magnetite Nanocomposites
This work reports the synthesis of natural zeolite-based silver and magnetite nanocomposites and their application for the catalytic oxidation of methylene blue in water. The zeolite was impregnated with 5.5 wt.% Fe in the form of magnetite nanoparticles with size of 32 nm, and with 6.4 wt.% Ag in t...
Saved in:
Published in: | Processes 2020-04, Vol.8 (4), p.471 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c292t-9a8aa855bc0249fee61ecaec02c09b911f4e90a160017e5d2bb7c071575d98143 |
---|---|
cites | cdi_FETCH-LOGICAL-c292t-9a8aa855bc0249fee61ecaec02c09b911f4e90a160017e5d2bb7c071575d98143 |
container_end_page | |
container_issue | 4 |
container_start_page | 471 |
container_title | Processes |
container_volume | 8 |
creator | Kuntubek, Aldiyar Kinayat, Nurassyl Meiramkulova, Kulyash Poulopoulos, Stavros G. Bear, Joseph C. Inglezakis, Vassilis J. |
description | This work reports the synthesis of natural zeolite-based silver and magnetite nanocomposites and their application for the catalytic oxidation of methylene blue in water. The zeolite was impregnated with 5.5 wt.% Fe in the form of magnetite nanoparticles with size of 32 nm, and with 6.4 wt.% Ag in the form of silver oxide and metallic silver nanoparticles with sizes of 42 and 20 nm, respectively. The results showed that physical adsorption contributed to the removal of methylene blue by 25–36% and that Fe3O4@NZU is superior to Ag2O@NZU and Ag0@NZU, leading to 55% removal without oxidant and 97% in the presence of H2O2. However, there is no evidence of significant mineralization of methylene blue. The application of reaction rate models showed that the reaction order changes from zero to first and second order depending on the H2O2 concentration. |
doi_str_mv | 10.3390/pr8040471 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2392184454</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2392184454</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-9a8aa855bc0249fee61ecaec02c09b911f4e90a160017e5d2bb7c071575d98143</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EElXpgTewxIlDwHbsOj7Sij-p0AP0wiXaOBtIlcbBdhB5e1IVIfayO5pPO9IQcs7ZVZoadt35jEkmNT8iEyGETozm-vjffUpmIWzZOIanmZpPSL2ECM0Qa0vX33UJsXYtdRV9wvgxNNgiXTQ90mKgm4B74xli76Ghb-iaOmKygIAlfambL_QU2pI-wXuLcbRGtHXW7ToXRhXOyEkFTcDZ756Szd3t6_IhWa3vH5c3q8QKI2JiIAPIlCosE9JUiHOOFnBUlpnCcF5JNAz4nDGuUZWiKLRlmiutSpNxmU7JxeFv591njyHmW9f7dozMRWoEz6RUe-ryQFnvQvBY5Z2vd-CHnLN8X2b-V2b6AxMzZtc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2392184454</pqid></control><display><type>article</type><title>Catalytic Oxidation of Methylene Blue by Use of Natural Zeolite-Based Silver and Magnetite Nanocomposites</title><source>Publicly Available Content (ProQuest)</source><creator>Kuntubek, Aldiyar ; Kinayat, Nurassyl ; Meiramkulova, Kulyash ; Poulopoulos, Stavros G. ; Bear, Joseph C. ; Inglezakis, Vassilis J.</creator><creatorcontrib>Kuntubek, Aldiyar ; Kinayat, Nurassyl ; Meiramkulova, Kulyash ; Poulopoulos, Stavros G. ; Bear, Joseph C. ; Inglezakis, Vassilis J.</creatorcontrib><description>This work reports the synthesis of natural zeolite-based silver and magnetite nanocomposites and their application for the catalytic oxidation of methylene blue in water. The zeolite was impregnated with 5.5 wt.% Fe in the form of magnetite nanoparticles with size of 32 nm, and with 6.4 wt.% Ag in the form of silver oxide and metallic silver nanoparticles with sizes of 42 and 20 nm, respectively. The results showed that physical adsorption contributed to the removal of methylene blue by 25–36% and that Fe3O4@NZU is superior to Ag2O@NZU and Ag0@NZU, leading to 55% removal without oxidant and 97% in the presence of H2O2. However, there is no evidence of significant mineralization of methylene blue. The application of reaction rate models showed that the reaction order changes from zero to first and second order depending on the H2O2 concentration.</description><identifier>ISSN: 2227-9717</identifier><identifier>EISSN: 2227-9717</identifier><identifier>DOI: 10.3390/pr8040471</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adsorption ; Catalytic oxidation ; Dyes ; Efficiency ; Hydrogen peroxide ; Iron oxides ; Magnetite ; Methylene blue ; Mineralization ; Nanocomposites ; Nanoparticles ; Oxidants ; Oxidation ; Oxidizing agents ; Scanning electron microscopy ; Silver ; Spectrum analysis ; Zeolites</subject><ispartof>Processes, 2020-04, Vol.8 (4), p.471</ispartof><rights>2020. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-9a8aa855bc0249fee61ecaec02c09b911f4e90a160017e5d2bb7c071575d98143</citedby><cites>FETCH-LOGICAL-c292t-9a8aa855bc0249fee61ecaec02c09b911f4e90a160017e5d2bb7c071575d98143</cites><orcidid>0000-0002-0195-0417 ; 0000-0001-7010-855X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2392184454/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2392184454?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Kuntubek, Aldiyar</creatorcontrib><creatorcontrib>Kinayat, Nurassyl</creatorcontrib><creatorcontrib>Meiramkulova, Kulyash</creatorcontrib><creatorcontrib>Poulopoulos, Stavros G.</creatorcontrib><creatorcontrib>Bear, Joseph C.</creatorcontrib><creatorcontrib>Inglezakis, Vassilis J.</creatorcontrib><title>Catalytic Oxidation of Methylene Blue by Use of Natural Zeolite-Based Silver and Magnetite Nanocomposites</title><title>Processes</title><description>This work reports the synthesis of natural zeolite-based silver and magnetite nanocomposites and their application for the catalytic oxidation of methylene blue in water. The zeolite was impregnated with 5.5 wt.% Fe in the form of magnetite nanoparticles with size of 32 nm, and with 6.4 wt.% Ag in the form of silver oxide and metallic silver nanoparticles with sizes of 42 and 20 nm, respectively. The results showed that physical adsorption contributed to the removal of methylene blue by 25–36% and that Fe3O4@NZU is superior to Ag2O@NZU and Ag0@NZU, leading to 55% removal without oxidant and 97% in the presence of H2O2. However, there is no evidence of significant mineralization of methylene blue. The application of reaction rate models showed that the reaction order changes from zero to first and second order depending on the H2O2 concentration.</description><subject>Adsorption</subject><subject>Catalytic oxidation</subject><subject>Dyes</subject><subject>Efficiency</subject><subject>Hydrogen peroxide</subject><subject>Iron oxides</subject><subject>Magnetite</subject><subject>Methylene blue</subject><subject>Mineralization</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Oxidants</subject><subject>Oxidation</subject><subject>Oxidizing agents</subject><subject>Scanning electron microscopy</subject><subject>Silver</subject><subject>Spectrum analysis</subject><subject>Zeolites</subject><issn>2227-9717</issn><issn>2227-9717</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpNkM1OwzAQhC0EElXpgTewxIlDwHbsOj7Sij-p0AP0wiXaOBtIlcbBdhB5e1IVIfayO5pPO9IQcs7ZVZoadt35jEkmNT8iEyGETozm-vjffUpmIWzZOIanmZpPSL2ECM0Qa0vX33UJsXYtdRV9wvgxNNgiXTQ90mKgm4B74xli76Ghb-iaOmKygIAlfambL_QU2pI-wXuLcbRGtHXW7ToXRhXOyEkFTcDZ756Szd3t6_IhWa3vH5c3q8QKI2JiIAPIlCosE9JUiHOOFnBUlpnCcF5JNAz4nDGuUZWiKLRlmiutSpNxmU7JxeFv591njyHmW9f7dozMRWoEz6RUe-ryQFnvQvBY5Z2vd-CHnLN8X2b-V2b6AxMzZtc</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Kuntubek, Aldiyar</creator><creator>Kinayat, Nurassyl</creator><creator>Meiramkulova, Kulyash</creator><creator>Poulopoulos, Stavros G.</creator><creator>Bear, Joseph C.</creator><creator>Inglezakis, Vassilis J.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>LK8</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0002-0195-0417</orcidid><orcidid>https://orcid.org/0000-0001-7010-855X</orcidid></search><sort><creationdate>20200401</creationdate><title>Catalytic Oxidation of Methylene Blue by Use of Natural Zeolite-Based Silver and Magnetite Nanocomposites</title><author>Kuntubek, Aldiyar ; Kinayat, Nurassyl ; Meiramkulova, Kulyash ; Poulopoulos, Stavros G. ; Bear, Joseph C. ; Inglezakis, Vassilis J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-9a8aa855bc0249fee61ecaec02c09b911f4e90a160017e5d2bb7c071575d98143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adsorption</topic><topic>Catalytic oxidation</topic><topic>Dyes</topic><topic>Efficiency</topic><topic>Hydrogen peroxide</topic><topic>Iron oxides</topic><topic>Magnetite</topic><topic>Methylene blue</topic><topic>Mineralization</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Oxidants</topic><topic>Oxidation</topic><topic>Oxidizing agents</topic><topic>Scanning electron microscopy</topic><topic>Silver</topic><topic>Spectrum analysis</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuntubek, Aldiyar</creatorcontrib><creatorcontrib>Kinayat, Nurassyl</creatorcontrib><creatorcontrib>Meiramkulova, Kulyash</creatorcontrib><creatorcontrib>Poulopoulos, Stavros G.</creatorcontrib><creatorcontrib>Bear, Joseph C.</creatorcontrib><creatorcontrib>Inglezakis, Vassilis J.</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Biological Sciences</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>Processes</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuntubek, Aldiyar</au><au>Kinayat, Nurassyl</au><au>Meiramkulova, Kulyash</au><au>Poulopoulos, Stavros G.</au><au>Bear, Joseph C.</au><au>Inglezakis, Vassilis J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Catalytic Oxidation of Methylene Blue by Use of Natural Zeolite-Based Silver and Magnetite Nanocomposites</atitle><jtitle>Processes</jtitle><date>2020-04-01</date><risdate>2020</risdate><volume>8</volume><issue>4</issue><spage>471</spage><pages>471-</pages><issn>2227-9717</issn><eissn>2227-9717</eissn><abstract>This work reports the synthesis of natural zeolite-based silver and magnetite nanocomposites and their application for the catalytic oxidation of methylene blue in water. The zeolite was impregnated with 5.5 wt.% Fe in the form of magnetite nanoparticles with size of 32 nm, and with 6.4 wt.% Ag in the form of silver oxide and metallic silver nanoparticles with sizes of 42 and 20 nm, respectively. The results showed that physical adsorption contributed to the removal of methylene blue by 25–36% and that Fe3O4@NZU is superior to Ag2O@NZU and Ag0@NZU, leading to 55% removal without oxidant and 97% in the presence of H2O2. However, there is no evidence of significant mineralization of methylene blue. The application of reaction rate models showed that the reaction order changes from zero to first and second order depending on the H2O2 concentration.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/pr8040471</doi><orcidid>https://orcid.org/0000-0002-0195-0417</orcidid><orcidid>https://orcid.org/0000-0001-7010-855X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2227-9717 |
ispartof | Processes, 2020-04, Vol.8 (4), p.471 |
issn | 2227-9717 2227-9717 |
language | eng |
recordid | cdi_proquest_journals_2392184454 |
source | Publicly Available Content (ProQuest) |
subjects | Adsorption Catalytic oxidation Dyes Efficiency Hydrogen peroxide Iron oxides Magnetite Methylene blue Mineralization Nanocomposites Nanoparticles Oxidants Oxidation Oxidizing agents Scanning electron microscopy Silver Spectrum analysis Zeolites |
title | Catalytic Oxidation of Methylene Blue by Use of Natural Zeolite-Based Silver and Magnetite Nanocomposites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T01%3A46%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Catalytic%20Oxidation%20of%20Methylene%20Blue%20by%20Use%20of%20Natural%20Zeolite-Based%20Silver%20and%20Magnetite%20Nanocomposites&rft.jtitle=Processes&rft.au=Kuntubek,%20Aldiyar&rft.date=2020-04-01&rft.volume=8&rft.issue=4&rft.spage=471&rft.pages=471-&rft.issn=2227-9717&rft.eissn=2227-9717&rft_id=info:doi/10.3390/pr8040471&rft_dat=%3Cproquest_cross%3E2392184454%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c292t-9a8aa855bc0249fee61ecaec02c09b911f4e90a160017e5d2bb7c071575d98143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2392184454&rft_id=info:pmid/&rfr_iscdi=true |