Loading…

Effects of Atmospheric Turbulence on High Cadence Observations of Stellar Occultations

In this paper we study the effects of systematic noise and atmospheric turbulence on image quality and signal-to-noise ratio for high cadence (∼20 fps) observations, in the context of fortuitous stellar occultation surveys. We performed an analysis of the spatial distribution of the weighted centroi...

Full description

Saved in:
Bibliographic Details
Published in:Publications of the Astronomical Society of the Pacific 2020-06, Vol.132 (1012), p.64501
Main Authors: Guerrero, C. A., Hernández-Águila, J. B., Castro-Chacón, J. H., Hernández-Valencia, B., Sánchez, E., Reyes-Ruiz, M., Silva, J. S., Álvarez-Santana, F. I.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c261t-cfc23adcc0b694351174168091880a12bcb0a525c6fd4a0f17011f8da0e587f93
container_end_page
container_issue 1012
container_start_page 64501
container_title Publications of the Astronomical Society of the Pacific
container_volume 132
creator Guerrero, C. A.
Hernández-Águila, J. B.
Castro-Chacón, J. H.
Hernández-Valencia, B.
Sánchez, E.
Reyes-Ruiz, M.
Silva, J. S.
Álvarez-Santana, F. I.
description In this paper we study the effects of systematic noise and atmospheric turbulence on image quality and signal-to-noise ratio for high cadence (∼20 fps) observations, in the context of fortuitous stellar occultation surveys. We performed an analysis of the spatial distribution of the weighted centroid of a reference star, in the X and Y direction (in the detector), and we also analyze the FWHM behavior to study the effect on the stellar profile. This information allowed us to find both the shift and the deformation of each image, which are the most significant effects of atmospheric turbulence on such images. Our observations were carried out at the 84 cm telescope of the San Pedro Mártir Observatory, located in Ensenada, Baja California, México. In order to isolate the atmospheric turbulence contribution on image quality and motion, the systematic noise due to telescope motion and other low frequency components were filtered-out from the distribution curve for the centroids. We used the APPHi pipeline as our analysis tool to study the effect of the size of the Region of Interest (ROIs) on energy loss in the photometry of the stars. We find for example that using ROI of 7 × 7 pixels in our study, the shifting and deformation of the images will produce an energy loss of ∼10%, for more than 9% of the observations, even after removing the systematic noise. Such energy loss can be comparable to the flux drop expected for some TNO occultations, thus leading to spurious detections. We also find that the algorithm developed to calculate an optimal ROI in the APPHi pipeline, makes a good compromise between avoiding the flux loss and keeping a reasonably small ROI, to reduce the data storage requirements and maximize the number of stars that can be simultaneously observed while limiting the overlap of ROIs for stars which are very close to each other.
doi_str_mv 10.1088/1538-3873/ab8564
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2392360968</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2392360968</sourcerecordid><originalsourceid>FETCH-LOGICAL-c261t-cfc23adcc0b694351174168091880a12bcb0a525c6fd4a0f17011f8da0e587f93</originalsourceid><addsrcrecordid>eNp1kMFLwzAUxoMoOKd3jwGv1r0kbZoex5hOGOzg9BrSNHEdXVOTVPC_t1tFT54e7-P7vvf4IXRL4IGAEDOSMZEwkbOZKkXG0zM0-ZXO0QQA0oRTAZfoKoQ9ACGCwAS9La01OgbsLJ7Hgwvdzvha423vy74xrTbYtXhVv-_wQlWnfVMG4z9VrF17ir1E0zTK443WfRNH_RpdWNUEc_Mzp-j1cbldrJL15ul5MV8nmnISE201ZarSGkpepCwjJE8JF1AQIUARWuoSVEYzzW2VKrAkH_62olJgMpHbgk3R3djbeffRmxDl3vW-HU5KygrKOBRcDC4YXdq7ELyxsvP1QfkvSUAe6ckjKnlEJUd6Q-R-jNSu--v81_4Ne0VvtA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2392360968</pqid></control><display><type>article</type><title>Effects of Atmospheric Turbulence on High Cadence Observations of Stellar Occultations</title><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Guerrero, C. A. ; Hernández-Águila, J. B. ; Castro-Chacón, J. H. ; Hernández-Valencia, B. ; Sánchez, E. ; Reyes-Ruiz, M. ; Silva, J. S. ; Álvarez-Santana, F. I.</creator><creatorcontrib>Guerrero, C. A. ; Hernández-Águila, J. B. ; Castro-Chacón, J. H. ; Hernández-Valencia, B. ; Sánchez, E. ; Reyes-Ruiz, M. ; Silva, J. S. ; Álvarez-Santana, F. I.</creatorcontrib><description>In this paper we study the effects of systematic noise and atmospheric turbulence on image quality and signal-to-noise ratio for high cadence (∼20 fps) observations, in the context of fortuitous stellar occultation surveys. We performed an analysis of the spatial distribution of the weighted centroid of a reference star, in the X and Y direction (in the detector), and we also analyze the FWHM behavior to study the effect on the stellar profile. This information allowed us to find both the shift and the deformation of each image, which are the most significant effects of atmospheric turbulence on such images. Our observations were carried out at the 84 cm telescope of the San Pedro Mártir Observatory, located in Ensenada, Baja California, México. In order to isolate the atmospheric turbulence contribution on image quality and motion, the systematic noise due to telescope motion and other low frequency components were filtered-out from the distribution curve for the centroids. We used the APPHi pipeline as our analysis tool to study the effect of the size of the Region of Interest (ROIs) on energy loss in the photometry of the stars. We find for example that using ROI of 7 × 7 pixels in our study, the shifting and deformation of the images will produce an energy loss of ∼10%, for more than 9% of the observations, even after removing the systematic noise. Such energy loss can be comparable to the flux drop expected for some TNO occultations, thus leading to spurious detections. We also find that the algorithm developed to calculate an optimal ROI in the APPHi pipeline, makes a good compromise between avoiding the flux loss and keeping a reasonably small ROI, to reduce the data storage requirements and maximize the number of stars that can be simultaneously observed while limiting the overlap of ROIs for stars which are very close to each other.</description><identifier>ISSN: 0004-6280</identifier><identifier>EISSN: 1538-3873</identifier><identifier>DOI: 10.1088/1538-3873/ab8564</identifier><language>eng</language><publisher>Philadelphia: The Astronomical Society of the Pacific</publisher><subject>Asteroid occultation ; Astronomy data reduction ; Atmospheric effects ; Atmospheric turbulence ; CCD photometry ; Data storage ; Energy loss ; Noise ; Sky surveys ; Spatial analysis ; Spatial distribution ; Stellar occultation ; Storage requirements ; Turbulence</subject><ispartof>Publications of the Astronomical Society of the Pacific, 2020-06, Vol.132 (1012), p.64501</ispartof><rights>2020. The Astronomical Society of the Pacific. All rights reserved.</rights><rights>Copyright IOP Publishing Jun 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c261t-cfc23adcc0b694351174168091880a12bcb0a525c6fd4a0f17011f8da0e587f93</cites><orcidid>0000-0002-2583-076X ; 0000-0002-1113-7489</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids></links><search><creatorcontrib>Guerrero, C. A.</creatorcontrib><creatorcontrib>Hernández-Águila, J. B.</creatorcontrib><creatorcontrib>Castro-Chacón, J. H.</creatorcontrib><creatorcontrib>Hernández-Valencia, B.</creatorcontrib><creatorcontrib>Sánchez, E.</creatorcontrib><creatorcontrib>Reyes-Ruiz, M.</creatorcontrib><creatorcontrib>Silva, J. S.</creatorcontrib><creatorcontrib>Álvarez-Santana, F. I.</creatorcontrib><title>Effects of Atmospheric Turbulence on High Cadence Observations of Stellar Occultations</title><title>Publications of the Astronomical Society of the Pacific</title><addtitle>Publ. Astron. Soc. Pac</addtitle><description>In this paper we study the effects of systematic noise and atmospheric turbulence on image quality and signal-to-noise ratio for high cadence (∼20 fps) observations, in the context of fortuitous stellar occultation surveys. We performed an analysis of the spatial distribution of the weighted centroid of a reference star, in the X and Y direction (in the detector), and we also analyze the FWHM behavior to study the effect on the stellar profile. This information allowed us to find both the shift and the deformation of each image, which are the most significant effects of atmospheric turbulence on such images. Our observations were carried out at the 84 cm telescope of the San Pedro Mártir Observatory, located in Ensenada, Baja California, México. In order to isolate the atmospheric turbulence contribution on image quality and motion, the systematic noise due to telescope motion and other low frequency components were filtered-out from the distribution curve for the centroids. We used the APPHi pipeline as our analysis tool to study the effect of the size of the Region of Interest (ROIs) on energy loss in the photometry of the stars. We find for example that using ROI of 7 × 7 pixels in our study, the shifting and deformation of the images will produce an energy loss of ∼10%, for more than 9% of the observations, even after removing the systematic noise. Such energy loss can be comparable to the flux drop expected for some TNO occultations, thus leading to spurious detections. We also find that the algorithm developed to calculate an optimal ROI in the APPHi pipeline, makes a good compromise between avoiding the flux loss and keeping a reasonably small ROI, to reduce the data storage requirements and maximize the number of stars that can be simultaneously observed while limiting the overlap of ROIs for stars which are very close to each other.</description><subject>Asteroid occultation</subject><subject>Astronomy data reduction</subject><subject>Atmospheric effects</subject><subject>Atmospheric turbulence</subject><subject>CCD photometry</subject><subject>Data storage</subject><subject>Energy loss</subject><subject>Noise</subject><subject>Sky surveys</subject><subject>Spatial analysis</subject><subject>Spatial distribution</subject><subject>Stellar occultation</subject><subject>Storage requirements</subject><subject>Turbulence</subject><issn>0004-6280</issn><issn>1538-3873</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kMFLwzAUxoMoOKd3jwGv1r0kbZoex5hOGOzg9BrSNHEdXVOTVPC_t1tFT54e7-P7vvf4IXRL4IGAEDOSMZEwkbOZKkXG0zM0-ZXO0QQA0oRTAZfoKoQ9ACGCwAS9La01OgbsLJ7Hgwvdzvha423vy74xrTbYtXhVv-_wQlWnfVMG4z9VrF17ir1E0zTK443WfRNH_RpdWNUEc_Mzp-j1cbldrJL15ul5MV8nmnISE201ZarSGkpepCwjJE8JF1AQIUARWuoSVEYzzW2VKrAkH_62olJgMpHbgk3R3djbeffRmxDl3vW-HU5KygrKOBRcDC4YXdq7ELyxsvP1QfkvSUAe6ckjKnlEJUd6Q-R-jNSu--v81_4Ne0VvtA</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Guerrero, C. A.</creator><creator>Hernández-Águila, J. B.</creator><creator>Castro-Chacón, J. H.</creator><creator>Hernández-Valencia, B.</creator><creator>Sánchez, E.</creator><creator>Reyes-Ruiz, M.</creator><creator>Silva, J. S.</creator><creator>Álvarez-Santana, F. I.</creator><general>The Astronomical Society of the Pacific</general><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>KL.</scope><orcidid>https://orcid.org/0000-0002-2583-076X</orcidid><orcidid>https://orcid.org/0000-0002-1113-7489</orcidid></search><sort><creationdate>20200601</creationdate><title>Effects of Atmospheric Turbulence on High Cadence Observations of Stellar Occultations</title><author>Guerrero, C. A. ; Hernández-Águila, J. B. ; Castro-Chacón, J. H. ; Hernández-Valencia, B. ; Sánchez, E. ; Reyes-Ruiz, M. ; Silva, J. S. ; Álvarez-Santana, F. I.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c261t-cfc23adcc0b694351174168091880a12bcb0a525c6fd4a0f17011f8da0e587f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Asteroid occultation</topic><topic>Astronomy data reduction</topic><topic>Atmospheric effects</topic><topic>Atmospheric turbulence</topic><topic>CCD photometry</topic><topic>Data storage</topic><topic>Energy loss</topic><topic>Noise</topic><topic>Sky surveys</topic><topic>Spatial analysis</topic><topic>Spatial distribution</topic><topic>Stellar occultation</topic><topic>Storage requirements</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guerrero, C. A.</creatorcontrib><creatorcontrib>Hernández-Águila, J. B.</creatorcontrib><creatorcontrib>Castro-Chacón, J. H.</creatorcontrib><creatorcontrib>Hernández-Valencia, B.</creatorcontrib><creatorcontrib>Sánchez, E.</creatorcontrib><creatorcontrib>Reyes-Ruiz, M.</creatorcontrib><creatorcontrib>Silva, J. S.</creatorcontrib><creatorcontrib>Álvarez-Santana, F. I.</creatorcontrib><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Publications of the Astronomical Society of the Pacific</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guerrero, C. A.</au><au>Hernández-Águila, J. B.</au><au>Castro-Chacón, J. H.</au><au>Hernández-Valencia, B.</au><au>Sánchez, E.</au><au>Reyes-Ruiz, M.</au><au>Silva, J. S.</au><au>Álvarez-Santana, F. I.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Atmospheric Turbulence on High Cadence Observations of Stellar Occultations</atitle><jtitle>Publications of the Astronomical Society of the Pacific</jtitle><addtitle>Publ. Astron. Soc. Pac</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>132</volume><issue>1012</issue><spage>64501</spage><pages>64501-</pages><issn>0004-6280</issn><eissn>1538-3873</eissn><abstract>In this paper we study the effects of systematic noise and atmospheric turbulence on image quality and signal-to-noise ratio for high cadence (∼20 fps) observations, in the context of fortuitous stellar occultation surveys. We performed an analysis of the spatial distribution of the weighted centroid of a reference star, in the X and Y direction (in the detector), and we also analyze the FWHM behavior to study the effect on the stellar profile. This information allowed us to find both the shift and the deformation of each image, which are the most significant effects of atmospheric turbulence on such images. Our observations were carried out at the 84 cm telescope of the San Pedro Mártir Observatory, located in Ensenada, Baja California, México. In order to isolate the atmospheric turbulence contribution on image quality and motion, the systematic noise due to telescope motion and other low frequency components were filtered-out from the distribution curve for the centroids. We used the APPHi pipeline as our analysis tool to study the effect of the size of the Region of Interest (ROIs) on energy loss in the photometry of the stars. We find for example that using ROI of 7 × 7 pixels in our study, the shifting and deformation of the images will produce an energy loss of ∼10%, for more than 9% of the observations, even after removing the systematic noise. Such energy loss can be comparable to the flux drop expected for some TNO occultations, thus leading to spurious detections. We also find that the algorithm developed to calculate an optimal ROI in the APPHi pipeline, makes a good compromise between avoiding the flux loss and keeping a reasonably small ROI, to reduce the data storage requirements and maximize the number of stars that can be simultaneously observed while limiting the overlap of ROIs for stars which are very close to each other.</abstract><cop>Philadelphia</cop><pub>The Astronomical Society of the Pacific</pub><doi>10.1088/1538-3873/ab8564</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2583-076X</orcidid><orcidid>https://orcid.org/0000-0002-1113-7489</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0004-6280
ispartof Publications of the Astronomical Society of the Pacific, 2020-06, Vol.132 (1012), p.64501
issn 0004-6280
1538-3873
language eng
recordid cdi_proquest_journals_2392360968
source JSTOR Archival Journals and Primary Sources Collection; Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Asteroid occultation
Astronomy data reduction
Atmospheric effects
Atmospheric turbulence
CCD photometry
Data storage
Energy loss
Noise
Sky surveys
Spatial analysis
Spatial distribution
Stellar occultation
Storage requirements
Turbulence
title Effects of Atmospheric Turbulence on High Cadence Observations of Stellar Occultations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T02%3A38%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Atmospheric%20Turbulence%20on%20High%20Cadence%20Observations%20of%20Stellar%20Occultations&rft.jtitle=Publications%20of%20the%20Astronomical%20Society%20of%20the%20Pacific&rft.au=Guerrero,%20C.%20A.&rft.date=2020-06-01&rft.volume=132&rft.issue=1012&rft.spage=64501&rft.pages=64501-&rft.issn=0004-6280&rft.eissn=1538-3873&rft_id=info:doi/10.1088/1538-3873/ab8564&rft_dat=%3Cproquest_cross%3E2392360968%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c261t-cfc23adcc0b694351174168091880a12bcb0a525c6fd4a0f17011f8da0e587f93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2392360968&rft_id=info:pmid/&rfr_iscdi=true