Loading…

Composite topological nodal lines penetrating the Brillouin zone in orthorhombic AgF2

It has recently been found that nonsymmorphic symmetries can bring many exotic band crossings. Here, based on symmetry analysis, we predict that materials with time-reversal symmetry in the space group of Pbca (No. 61) possess rich symmetry-enforced band crossings, including nodal surfaces, fourfold...

Full description

Saved in:
Bibliographic Details
Published in:npj computational materials 2019-04, Vol.5 (1), Article 53
Main Authors: Shao, Dexi, Wang, Huaiqiang, Chen, Tong, Lu, Pengchao, Gu, Qinyan, Sheng, Li, Xing, Dingyu, Sun, Jian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c359t-f324cde18175224ec33d6c5ec820fc90574f333de79ab39dcc0df815ac744c5f3
cites cdi_FETCH-LOGICAL-c359t-f324cde18175224ec33d6c5ec820fc90574f333de79ab39dcc0df815ac744c5f3
container_end_page
container_issue 1
container_start_page
container_title npj computational materials
container_volume 5
creator Shao, Dexi
Wang, Huaiqiang
Chen, Tong
Lu, Pengchao
Gu, Qinyan
Sheng, Li
Xing, Dingyu
Sun, Jian
description It has recently been found that nonsymmorphic symmetries can bring many exotic band crossings. Here, based on symmetry analysis, we predict that materials with time-reversal symmetry in the space group of Pbca (No. 61) possess rich symmetry-enforced band crossings, including nodal surfaces, fourfold degenerate nodal lines and hourglass Dirac loops, which appear in triplets as ensured by the cyclic permutation symmetry. We take Pbca AgF 2 as an example in real systems and studied its band structures with ab initio calculations. Specifically, in the absence of spin-orbit coupling (SOC), besides the above-mentioned band degeneracies, this system features a nodal chain and a nodal armillary sphere penetrating the Brillouin zone (BZ). While with SOC, we find a new configuration of the hourglass Dirac loop/chain with the feature traversing the BZ, which originates from the splitting of a Dirac loop confined in the BZ. Furthermore, guided by the bulk-surface correspondence, we calculated the surface states to explore these bulk nodal phenomena. The evolution of these interesting nodal phenomena traversing the BZ under two specific uniaxial strains is also discussed.
doi_str_mv 10.1038/s41524-019-0190-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2393005838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2393005838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f324cde18175224ec33d6c5ec820fc90574f333de79ab39dcc0df815ac744c5f3</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgqf0B3gKeVydf3eyxFqtCwYs9h202u03ZJmuSPeivN2UFvXh4M8Pw3pvhIXRL4J4Akw-RE0F5AaQ6Awp2gWYURFmwagmXf-ZrtIjxCJBZVFIOM7Rb-9Pgo00GJz_43ndW1z12vsm1t85EPBhnUqiTdR1OB4Mfg-17P1qHv7wzOHcf0sGHgz_trcarbkNv0FVb99Esfvoc7TZP7-uXYvv2_LpebQvNRJWKllGuG0MkKQWl3GjGmqUWRksKra7y17xleWfKqt6zqtEamlYSUeuScy1aNkd3k-8Q_MdoYlJHPwaXTyrKKgYgJJOZRSaWDj7GYFo1BHuqw6cioM4BqilAlWM5AxTLGjppYua6zoRf5_9F3xODc2k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393005838</pqid></control><display><type>article</type><title>Composite topological nodal lines penetrating the Brillouin zone in orthorhombic AgF2</title><source>Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Shao, Dexi ; Wang, Huaiqiang ; Chen, Tong ; Lu, Pengchao ; Gu, Qinyan ; Sheng, Li ; Xing, Dingyu ; Sun, Jian</creator><creatorcontrib>Shao, Dexi ; Wang, Huaiqiang ; Chen, Tong ; Lu, Pengchao ; Gu, Qinyan ; Sheng, Li ; Xing, Dingyu ; Sun, Jian</creatorcontrib><description>It has recently been found that nonsymmorphic symmetries can bring many exotic band crossings. Here, based on symmetry analysis, we predict that materials with time-reversal symmetry in the space group of Pbca (No. 61) possess rich symmetry-enforced band crossings, including nodal surfaces, fourfold degenerate nodal lines and hourglass Dirac loops, which appear in triplets as ensured by the cyclic permutation symmetry. We take Pbca AgF 2 as an example in real systems and studied its band structures with ab initio calculations. Specifically, in the absence of spin-orbit coupling (SOC), besides the above-mentioned band degeneracies, this system features a nodal chain and a nodal armillary sphere penetrating the Brillouin zone (BZ). While with SOC, we find a new configuration of the hourglass Dirac loop/chain with the feature traversing the BZ, which originates from the splitting of a Dirac loop confined in the BZ. Furthermore, guided by the bulk-surface correspondence, we calculated the surface states to explore these bulk nodal phenomena. The evolution of these interesting nodal phenomena traversing the BZ under two specific uniaxial strains is also discussed.</description><identifier>ISSN: 2057-3960</identifier><identifier>EISSN: 2057-3960</identifier><identifier>DOI: 10.1038/s41524-019-0190-3</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766 ; 639/766/119 ; 639/766/119/2792 ; Brillouin zones ; Chain scission ; Chains ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Computational Intelligence ; Materials Science ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Permutations ; Spin-orbit interactions ; Symmetry ; Theoretical</subject><ispartof>npj computational materials, 2019-04, Vol.5 (1), Article 53</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-f324cde18175224ec33d6c5ec820fc90574f333de79ab39dcc0df815ac744c5f3</citedby><cites>FETCH-LOGICAL-c359t-f324cde18175224ec33d6c5ec820fc90574f333de79ab39dcc0df815ac744c5f3</cites><orcidid>0000-0001-6172-9100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2393005838/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2393005838?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Shao, Dexi</creatorcontrib><creatorcontrib>Wang, Huaiqiang</creatorcontrib><creatorcontrib>Chen, Tong</creatorcontrib><creatorcontrib>Lu, Pengchao</creatorcontrib><creatorcontrib>Gu, Qinyan</creatorcontrib><creatorcontrib>Sheng, Li</creatorcontrib><creatorcontrib>Xing, Dingyu</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><title>Composite topological nodal lines penetrating the Brillouin zone in orthorhombic AgF2</title><title>npj computational materials</title><addtitle>npj Comput Mater</addtitle><description>It has recently been found that nonsymmorphic symmetries can bring many exotic band crossings. Here, based on symmetry analysis, we predict that materials with time-reversal symmetry in the space group of Pbca (No. 61) possess rich symmetry-enforced band crossings, including nodal surfaces, fourfold degenerate nodal lines and hourglass Dirac loops, which appear in triplets as ensured by the cyclic permutation symmetry. We take Pbca AgF 2 as an example in real systems and studied its band structures with ab initio calculations. Specifically, in the absence of spin-orbit coupling (SOC), besides the above-mentioned band degeneracies, this system features a nodal chain and a nodal armillary sphere penetrating the Brillouin zone (BZ). While with SOC, we find a new configuration of the hourglass Dirac loop/chain with the feature traversing the BZ, which originates from the splitting of a Dirac loop confined in the BZ. Furthermore, guided by the bulk-surface correspondence, we calculated the surface states to explore these bulk nodal phenomena. The evolution of these interesting nodal phenomena traversing the BZ under two specific uniaxial strains is also discussed.</description><subject>639/766</subject><subject>639/766/119</subject><subject>639/766/119/2792</subject><subject>Brillouin zones</subject><subject>Chain scission</subject><subject>Chains</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Computational Intelligence</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Permutations</subject><subject>Spin-orbit interactions</subject><subject>Symmetry</subject><subject>Theoretical</subject><issn>2057-3960</issn><issn>2057-3960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1UE1LAzEQDaJgqf0B3gKeVydf3eyxFqtCwYs9h202u03ZJmuSPeivN2UFvXh4M8Pw3pvhIXRL4J4Akw-RE0F5AaQ6Awp2gWYURFmwagmXf-ZrtIjxCJBZVFIOM7Rb-9Pgo00GJz_43ndW1z12vsm1t85EPBhnUqiTdR1OB4Mfg-17P1qHv7wzOHcf0sGHgz_trcarbkNv0FVb99Esfvoc7TZP7-uXYvv2_LpebQvNRJWKllGuG0MkKQWl3GjGmqUWRksKra7y17xleWfKqt6zqtEamlYSUeuScy1aNkd3k-8Q_MdoYlJHPwaXTyrKKgYgJJOZRSaWDj7GYFo1BHuqw6cioM4BqilAlWM5AxTLGjppYua6zoRf5_9F3xODc2k</recordid><startdate>20190423</startdate><enddate>20190423</enddate><creator>Shao, Dexi</creator><creator>Wang, Huaiqiang</creator><creator>Chen, Tong</creator><creator>Lu, Pengchao</creator><creator>Gu, Qinyan</creator><creator>Sheng, Li</creator><creator>Xing, Dingyu</creator><creator>Sun, Jian</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-6172-9100</orcidid></search><sort><creationdate>20190423</creationdate><title>Composite topological nodal lines penetrating the Brillouin zone in orthorhombic AgF2</title><author>Shao, Dexi ; Wang, Huaiqiang ; Chen, Tong ; Lu, Pengchao ; Gu, Qinyan ; Sheng, Li ; Xing, Dingyu ; Sun, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f324cde18175224ec33d6c5ec820fc90574f333de79ab39dcc0df815ac744c5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/766</topic><topic>639/766/119</topic><topic>639/766/119/2792</topic><topic>Brillouin zones</topic><topic>Chain scission</topic><topic>Chains</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Computational Intelligence</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Permutations</topic><topic>Spin-orbit interactions</topic><topic>Symmetry</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Dexi</creatorcontrib><creatorcontrib>Wang, Huaiqiang</creatorcontrib><creatorcontrib>Chen, Tong</creatorcontrib><creatorcontrib>Lu, Pengchao</creatorcontrib><creatorcontrib>Gu, Qinyan</creatorcontrib><creatorcontrib>Sheng, Li</creatorcontrib><creatorcontrib>Xing, Dingyu</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>npj computational materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Dexi</au><au>Wang, Huaiqiang</au><au>Chen, Tong</au><au>Lu, Pengchao</au><au>Gu, Qinyan</au><au>Sheng, Li</au><au>Xing, Dingyu</au><au>Sun, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composite topological nodal lines penetrating the Brillouin zone in orthorhombic AgF2</atitle><jtitle>npj computational materials</jtitle><stitle>npj Comput Mater</stitle><date>2019-04-23</date><risdate>2019</risdate><volume>5</volume><issue>1</issue><artnum>53</artnum><issn>2057-3960</issn><eissn>2057-3960</eissn><abstract>It has recently been found that nonsymmorphic symmetries can bring many exotic band crossings. Here, based on symmetry analysis, we predict that materials with time-reversal symmetry in the space group of Pbca (No. 61) possess rich symmetry-enforced band crossings, including nodal surfaces, fourfold degenerate nodal lines and hourglass Dirac loops, which appear in triplets as ensured by the cyclic permutation symmetry. We take Pbca AgF 2 as an example in real systems and studied its band structures with ab initio calculations. Specifically, in the absence of spin-orbit coupling (SOC), besides the above-mentioned band degeneracies, this system features a nodal chain and a nodal armillary sphere penetrating the Brillouin zone (BZ). While with SOC, we find a new configuration of the hourglass Dirac loop/chain with the feature traversing the BZ, which originates from the splitting of a Dirac loop confined in the BZ. Furthermore, guided by the bulk-surface correspondence, we calculated the surface states to explore these bulk nodal phenomena. The evolution of these interesting nodal phenomena traversing the BZ under two specific uniaxial strains is also discussed.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41524-019-0190-3</doi><orcidid>https://orcid.org/0000-0001-6172-9100</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2057-3960
ispartof npj computational materials, 2019-04, Vol.5 (1), Article 53
issn 2057-3960
2057-3960
language eng
recordid cdi_proquest_journals_2393005838
source Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access
subjects 639/766
639/766/119
639/766/119/2792
Brillouin zones
Chain scission
Chains
Characterization and Evaluation of Materials
Chemistry and Materials Science
Computational Intelligence
Materials Science
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical Modeling and Industrial Mathematics
Permutations
Spin-orbit interactions
Symmetry
Theoretical
title Composite topological nodal lines penetrating the Brillouin zone in orthorhombic AgF2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A08%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composite%20topological%20nodal%20lines%20penetrating%20the%20Brillouin%20zone%20in%20orthorhombic%20AgF2&rft.jtitle=npj%20computational%20materials&rft.au=Shao,%20Dexi&rft.date=2019-04-23&rft.volume=5&rft.issue=1&rft.artnum=53&rft.issn=2057-3960&rft.eissn=2057-3960&rft_id=info:doi/10.1038/s41524-019-0190-3&rft_dat=%3Cproquest_cross%3E2393005838%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-f324cde18175224ec33d6c5ec820fc90574f333de79ab39dcc0df815ac744c5f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2393005838&rft_id=info:pmid/&rfr_iscdi=true