Loading…
Composite topological nodal lines penetrating the Brillouin zone in orthorhombic AgF2
It has recently been found that nonsymmorphic symmetries can bring many exotic band crossings. Here, based on symmetry analysis, we predict that materials with time-reversal symmetry in the space group of Pbca (No. 61) possess rich symmetry-enforced band crossings, including nodal surfaces, fourfold...
Saved in:
Published in: | npj computational materials 2019-04, Vol.5 (1), Article 53 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c359t-f324cde18175224ec33d6c5ec820fc90574f333de79ab39dcc0df815ac744c5f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c359t-f324cde18175224ec33d6c5ec820fc90574f333de79ab39dcc0df815ac744c5f3 |
container_end_page | |
container_issue | 1 |
container_start_page | |
container_title | npj computational materials |
container_volume | 5 |
creator | Shao, Dexi Wang, Huaiqiang Chen, Tong Lu, Pengchao Gu, Qinyan Sheng, Li Xing, Dingyu Sun, Jian |
description | It has recently been found that nonsymmorphic symmetries can bring many exotic band crossings. Here, based on symmetry analysis, we predict that materials with time-reversal symmetry in the space group of
Pbca
(No. 61) possess rich symmetry-enforced band crossings, including nodal surfaces, fourfold degenerate nodal lines and hourglass Dirac loops, which appear in triplets as ensured by the cyclic permutation symmetry. We take
Pbca
AgF
2
as an example in real systems and studied its band structures with ab initio calculations. Specifically, in the absence of spin-orbit coupling (SOC), besides the above-mentioned band degeneracies, this system features a nodal chain and a nodal armillary sphere penetrating the Brillouin zone (BZ). While with SOC, we find a new configuration of the hourglass Dirac loop/chain with the feature traversing the BZ, which originates from the splitting of a Dirac loop confined in the BZ. Furthermore, guided by the bulk-surface correspondence, we calculated the surface states to explore these bulk nodal phenomena. The evolution of these interesting nodal phenomena traversing the BZ under two specific uniaxial strains is also discussed. |
doi_str_mv | 10.1038/s41524-019-0190-3 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2393005838</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2393005838</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-f324cde18175224ec33d6c5ec820fc90574f333de79ab39dcc0df815ac744c5f3</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgqf0B3gKeVydf3eyxFqtCwYs9h202u03ZJmuSPeivN2UFvXh4M8Pw3pvhIXRL4J4Akw-RE0F5AaQ6Awp2gWYURFmwagmXf-ZrtIjxCJBZVFIOM7Rb-9Pgo00GJz_43ndW1z12vsm1t85EPBhnUqiTdR1OB4Mfg-17P1qHv7wzOHcf0sGHgz_trcarbkNv0FVb99Esfvoc7TZP7-uXYvv2_LpebQvNRJWKllGuG0MkKQWl3GjGmqUWRksKra7y17xleWfKqt6zqtEamlYSUeuScy1aNkd3k-8Q_MdoYlJHPwaXTyrKKgYgJJOZRSaWDj7GYFo1BHuqw6cioM4BqilAlWM5AxTLGjppYua6zoRf5_9F3xODc2k</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393005838</pqid></control><display><type>article</type><title>Composite topological nodal lines penetrating the Brillouin zone in orthorhombic AgF2</title><source>Publicly Available Content Database</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Shao, Dexi ; Wang, Huaiqiang ; Chen, Tong ; Lu, Pengchao ; Gu, Qinyan ; Sheng, Li ; Xing, Dingyu ; Sun, Jian</creator><creatorcontrib>Shao, Dexi ; Wang, Huaiqiang ; Chen, Tong ; Lu, Pengchao ; Gu, Qinyan ; Sheng, Li ; Xing, Dingyu ; Sun, Jian</creatorcontrib><description>It has recently been found that nonsymmorphic symmetries can bring many exotic band crossings. Here, based on symmetry analysis, we predict that materials with time-reversal symmetry in the space group of
Pbca
(No. 61) possess rich symmetry-enforced band crossings, including nodal surfaces, fourfold degenerate nodal lines and hourglass Dirac loops, which appear in triplets as ensured by the cyclic permutation symmetry. We take
Pbca
AgF
2
as an example in real systems and studied its band structures with ab initio calculations. Specifically, in the absence of spin-orbit coupling (SOC), besides the above-mentioned band degeneracies, this system features a nodal chain and a nodal armillary sphere penetrating the Brillouin zone (BZ). While with SOC, we find a new configuration of the hourglass Dirac loop/chain with the feature traversing the BZ, which originates from the splitting of a Dirac loop confined in the BZ. Furthermore, guided by the bulk-surface correspondence, we calculated the surface states to explore these bulk nodal phenomena. The evolution of these interesting nodal phenomena traversing the BZ under two specific uniaxial strains is also discussed.</description><identifier>ISSN: 2057-3960</identifier><identifier>EISSN: 2057-3960</identifier><identifier>DOI: 10.1038/s41524-019-0190-3</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766 ; 639/766/119 ; 639/766/119/2792 ; Brillouin zones ; Chain scission ; Chains ; Characterization and Evaluation of Materials ; Chemistry and Materials Science ; Computational Intelligence ; Materials Science ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical Modeling and Industrial Mathematics ; Permutations ; Spin-orbit interactions ; Symmetry ; Theoretical</subject><ispartof>npj computational materials, 2019-04, Vol.5 (1), Article 53</ispartof><rights>The Author(s) 2019</rights><rights>The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c359t-f324cde18175224ec33d6c5ec820fc90574f333de79ab39dcc0df815ac744c5f3</citedby><cites>FETCH-LOGICAL-c359t-f324cde18175224ec33d6c5ec820fc90574f333de79ab39dcc0df815ac744c5f3</cites><orcidid>0000-0001-6172-9100</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2393005838/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2393005838?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25751,27922,27923,37010,44588,74896</link.rule.ids></links><search><creatorcontrib>Shao, Dexi</creatorcontrib><creatorcontrib>Wang, Huaiqiang</creatorcontrib><creatorcontrib>Chen, Tong</creatorcontrib><creatorcontrib>Lu, Pengchao</creatorcontrib><creatorcontrib>Gu, Qinyan</creatorcontrib><creatorcontrib>Sheng, Li</creatorcontrib><creatorcontrib>Xing, Dingyu</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><title>Composite topological nodal lines penetrating the Brillouin zone in orthorhombic AgF2</title><title>npj computational materials</title><addtitle>npj Comput Mater</addtitle><description>It has recently been found that nonsymmorphic symmetries can bring many exotic band crossings. Here, based on symmetry analysis, we predict that materials with time-reversal symmetry in the space group of
Pbca
(No. 61) possess rich symmetry-enforced band crossings, including nodal surfaces, fourfold degenerate nodal lines and hourglass Dirac loops, which appear in triplets as ensured by the cyclic permutation symmetry. We take
Pbca
AgF
2
as an example in real systems and studied its band structures with ab initio calculations. Specifically, in the absence of spin-orbit coupling (SOC), besides the above-mentioned band degeneracies, this system features a nodal chain and a nodal armillary sphere penetrating the Brillouin zone (BZ). While with SOC, we find a new configuration of the hourglass Dirac loop/chain with the feature traversing the BZ, which originates from the splitting of a Dirac loop confined in the BZ. Furthermore, guided by the bulk-surface correspondence, we calculated the surface states to explore these bulk nodal phenomena. The evolution of these interesting nodal phenomena traversing the BZ under two specific uniaxial strains is also discussed.</description><subject>639/766</subject><subject>639/766/119</subject><subject>639/766/119/2792</subject><subject>Brillouin zones</subject><subject>Chain scission</subject><subject>Chains</subject><subject>Characterization and Evaluation of Materials</subject><subject>Chemistry and Materials Science</subject><subject>Computational Intelligence</subject><subject>Materials Science</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Permutations</subject><subject>Spin-orbit interactions</subject><subject>Symmetry</subject><subject>Theoretical</subject><issn>2057-3960</issn><issn>2057-3960</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNp1UE1LAzEQDaJgqf0B3gKeVydf3eyxFqtCwYs9h202u03ZJmuSPeivN2UFvXh4M8Pw3pvhIXRL4J4Akw-RE0F5AaQ6Awp2gWYURFmwagmXf-ZrtIjxCJBZVFIOM7Rb-9Pgo00GJz_43ndW1z12vsm1t85EPBhnUqiTdR1OB4Mfg-17P1qHv7wzOHcf0sGHgz_trcarbkNv0FVb99Esfvoc7TZP7-uXYvv2_LpebQvNRJWKllGuG0MkKQWl3GjGmqUWRksKra7y17xleWfKqt6zqtEamlYSUeuScy1aNkd3k-8Q_MdoYlJHPwaXTyrKKgYgJJOZRSaWDj7GYFo1BHuqw6cioM4BqilAlWM5AxTLGjppYua6zoRf5_9F3xODc2k</recordid><startdate>20190423</startdate><enddate>20190423</enddate><creator>Shao, Dexi</creator><creator>Wang, Huaiqiang</creator><creator>Chen, Tong</creator><creator>Lu, Pengchao</creator><creator>Gu, Qinyan</creator><creator>Sheng, Li</creator><creator>Xing, Dingyu</creator><creator>Sun, Jian</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><orcidid>https://orcid.org/0000-0001-6172-9100</orcidid></search><sort><creationdate>20190423</creationdate><title>Composite topological nodal lines penetrating the Brillouin zone in orthorhombic AgF2</title><author>Shao, Dexi ; Wang, Huaiqiang ; Chen, Tong ; Lu, Pengchao ; Gu, Qinyan ; Sheng, Li ; Xing, Dingyu ; Sun, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-f324cde18175224ec33d6c5ec820fc90574f333de79ab39dcc0df815ac744c5f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>639/766</topic><topic>639/766/119</topic><topic>639/766/119/2792</topic><topic>Brillouin zones</topic><topic>Chain scission</topic><topic>Chains</topic><topic>Characterization and Evaluation of Materials</topic><topic>Chemistry and Materials Science</topic><topic>Computational Intelligence</topic><topic>Materials Science</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Permutations</topic><topic>Spin-orbit interactions</topic><topic>Symmetry</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Dexi</creatorcontrib><creatorcontrib>Wang, Huaiqiang</creatorcontrib><creatorcontrib>Chen, Tong</creatorcontrib><creatorcontrib>Lu, Pengchao</creatorcontrib><creatorcontrib>Gu, Qinyan</creatorcontrib><creatorcontrib>Sheng, Li</creatorcontrib><creatorcontrib>Xing, Dingyu</creatorcontrib><creatorcontrib>Sun, Jian</creatorcontrib><collection>Springer_OA刊</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest_Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><jtitle>npj computational materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Dexi</au><au>Wang, Huaiqiang</au><au>Chen, Tong</au><au>Lu, Pengchao</au><au>Gu, Qinyan</au><au>Sheng, Li</au><au>Xing, Dingyu</au><au>Sun, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Composite topological nodal lines penetrating the Brillouin zone in orthorhombic AgF2</atitle><jtitle>npj computational materials</jtitle><stitle>npj Comput Mater</stitle><date>2019-04-23</date><risdate>2019</risdate><volume>5</volume><issue>1</issue><artnum>53</artnum><issn>2057-3960</issn><eissn>2057-3960</eissn><abstract>It has recently been found that nonsymmorphic symmetries can bring many exotic band crossings. Here, based on symmetry analysis, we predict that materials with time-reversal symmetry in the space group of
Pbca
(No. 61) possess rich symmetry-enforced band crossings, including nodal surfaces, fourfold degenerate nodal lines and hourglass Dirac loops, which appear in triplets as ensured by the cyclic permutation symmetry. We take
Pbca
AgF
2
as an example in real systems and studied its band structures with ab initio calculations. Specifically, in the absence of spin-orbit coupling (SOC), besides the above-mentioned band degeneracies, this system features a nodal chain and a nodal armillary sphere penetrating the Brillouin zone (BZ). While with SOC, we find a new configuration of the hourglass Dirac loop/chain with the feature traversing the BZ, which originates from the splitting of a Dirac loop confined in the BZ. Furthermore, guided by the bulk-surface correspondence, we calculated the surface states to explore these bulk nodal phenomena. The evolution of these interesting nodal phenomena traversing the BZ under two specific uniaxial strains is also discussed.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41524-019-0190-3</doi><orcidid>https://orcid.org/0000-0001-6172-9100</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2057-3960 |
ispartof | npj computational materials, 2019-04, Vol.5 (1), Article 53 |
issn | 2057-3960 2057-3960 |
language | eng |
recordid | cdi_proquest_journals_2393005838 |
source | Publicly Available Content Database; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/766 639/766/119 639/766/119/2792 Brillouin zones Chain scission Chains Characterization and Evaluation of Materials Chemistry and Materials Science Computational Intelligence Materials Science Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Permutations Spin-orbit interactions Symmetry Theoretical |
title | Composite topological nodal lines penetrating the Brillouin zone in orthorhombic AgF2 |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A08%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Composite%20topological%20nodal%20lines%20penetrating%20the%20Brillouin%20zone%20in%20orthorhombic%20AgF2&rft.jtitle=npj%20computational%20materials&rft.au=Shao,%20Dexi&rft.date=2019-04-23&rft.volume=5&rft.issue=1&rft.artnum=53&rft.issn=2057-3960&rft.eissn=2057-3960&rft_id=info:doi/10.1038/s41524-019-0190-3&rft_dat=%3Cproquest_cross%3E2393005838%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c359t-f324cde18175224ec33d6c5ec820fc90574f333de79ab39dcc0df815ac744c5f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2393005838&rft_id=info:pmid/&rfr_iscdi=true |