Loading…

Separating the Impact of Individual Land Surface Properties on the Terrestrial Surface Energy Budget in both the Coupled and Uncoupled Land–Atmosphere System

Changes in the land surface can drive large responses in the atmosphere on local, regional, and global scales. Surface properties control the partitioning of energy within the surface energy budget to fluxes of shortwave and longwave radiation, sensible and latent heat, and ground heat storage. Chan...

Full description

Saved in:
Bibliographic Details
Published in:Journal of climate 2019-09, Vol.32 (18), p.5725-5744
Main Authors: Laguë, Marysa M., Bonan, Gordon B., Swann, Abigail L. S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c335t-b49f013f82e5d4ecb74534ca995f9d46834705b4e204786853907981200bdfd3
cites cdi_FETCH-LOGICAL-c335t-b49f013f82e5d4ecb74534ca995f9d46834705b4e204786853907981200bdfd3
container_end_page 5744
container_issue 18
container_start_page 5725
container_title Journal of climate
container_volume 32
creator Laguë, Marysa M.
Bonan, Gordon B.
Swann, Abigail L. S.
description Changes in the land surface can drive large responses in the atmosphere on local, regional, and global scales. Surface properties control the partitioning of energy within the surface energy budget to fluxes of shortwave and longwave radiation, sensible and latent heat, and ground heat storage. Changes in surface energy fluxes can impact the atmosphere across scales through changes in temperature, cloud cover, and large-scale atmospheric circulation. We test the sensitivity of the atmosphere to global changes in three land surface properties: albedo, evaporative resistance, and surface roughness. We show the impact of changing these surface properties differs drastically between simulations run with an offline land model, compared to coupled land–atmosphere simulations that allow for atmospheric feedbacks associated with land–atmosphere coupling. Atmospheric feedbacks play a critical role in defining the temperature response to changes in albedo and evaporative resistance, particularly in the extratropics. More than 50% of the surface temperature response to changing albedo comes from atmospheric feedbacks in over 80% of land areas. In some regions, cloud feedbacks in response to increased evaporative resistance result in nearly 1 K of additional surface warming. In contrast, the magnitude of surface temperature responses to changes in vegetation height are comparable between offline and coupled simulations. We improve our fundamental understanding of how and why changes in vegetation cover drive responses in the atmosphere, and develop understanding of the role of individual land surface properties in controlling climate across spatial scales—critical to understanding the effects of land-use change on Earth’s climate.
doi_str_mv 10.1175/JCLI-D-18-0812.1
format article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2393199405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26831680</jstor_id><sourcerecordid>26831680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-b49f013f82e5d4ecb74534ca995f9d46834705b4e204786853907981200bdfd3</originalsourceid><addsrcrecordid>eNo9kU1u2zAQhYmiAeom2WcTgEDXSoYiaZHLxPlzYaAF7K4JShzZMmxRJakC3vUOOUDulpNEitOuBgN8783PI-SCwRVjhbz-PlvMs7uMqQwUy6_YJzJhMocMhMg_kwkoLTJVSPmFfI1xC8DyKcCEvCyxs8Gmpl3TtEE633e2StTXdN665k_jerujC9s6uuxDbSukP4PvMKQGI_Xtu2aFIWBMoRnQf9R9i2F9oLe9W2OiTUtLnzbv9Mz33Q4dHT1_tdVHN454_ft8k_Y-dhsMSJeHmHB_Rk5qu4t4_lFPyerhfjV7yhY_Huezm0VWcS5TVgpdA-O1ylE6gVVZCMlFZbWWtXZiqrgoQJYCcxCFmirJNRR6eBRA6WrHT8m3o20X_O9-OMZsfR_aYaLJueZMawFyoOBIVcHHGLA2XWj2NhwMAzOmYMYUzJ1hyowpGDZILo-SbUw-_OfzYSM2VcDfAM8Ehqs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393199405</pqid></control><display><type>article</type><title>Separating the Impact of Individual Land Surface Properties on the Terrestrial Surface Energy Budget in both the Coupled and Uncoupled Land–Atmosphere System</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Laguë, Marysa M. ; Bonan, Gordon B. ; Swann, Abigail L. S.</creator><creatorcontrib>Laguë, Marysa M. ; Bonan, Gordon B. ; Swann, Abigail L. S.</creatorcontrib><description>Changes in the land surface can drive large responses in the atmosphere on local, regional, and global scales. Surface properties control the partitioning of energy within the surface energy budget to fluxes of shortwave and longwave radiation, sensible and latent heat, and ground heat storage. Changes in surface energy fluxes can impact the atmosphere across scales through changes in temperature, cloud cover, and large-scale atmospheric circulation. We test the sensitivity of the atmosphere to global changes in three land surface properties: albedo, evaporative resistance, and surface roughness. We show the impact of changing these surface properties differs drastically between simulations run with an offline land model, compared to coupled land–atmosphere simulations that allow for atmospheric feedbacks associated with land–atmosphere coupling. Atmospheric feedbacks play a critical role in defining the temperature response to changes in albedo and evaporative resistance, particularly in the extratropics. More than 50% of the surface temperature response to changing albedo comes from atmospheric feedbacks in over 80% of land areas. In some regions, cloud feedbacks in response to increased evaporative resistance result in nearly 1 K of additional surface warming. In contrast, the magnitude of surface temperature responses to changes in vegetation height are comparable between offline and coupled simulations. We improve our fundamental understanding of how and why changes in vegetation cover drive responses in the atmosphere, and develop understanding of the role of individual land surface properties in controlling climate across spatial scales—critical to understanding the effects of land-use change on Earth’s climate.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/JCLI-D-18-0812.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Albedo ; Albedo (solar) ; Atmosphere ; Atmospheric circulation ; Climate ; Climate change ; Cloud cover ; Clouds ; Computer simulation ; Energy ; Energy budget ; Energy storage ; Evaporation ; Fluxes ; Heat storage ; Land use ; Latent heat ; Long wave radiation ; Ocean circulation ; Plant cover ; Precipitation ; Properties (attributes) ; Radiation ; Sensible and latent heat ; Sensitivity analysis ; Short wave radiation ; Simulation ; Surface energy ; Surface properties ; Surface roughness ; Surface temperature ; Temperature ; Vegetation ; Vegetation cover</subject><ispartof>Journal of climate, 2019-09, Vol.32 (18), p.5725-5744</ispartof><rights>2019 American Meteorological Society</rights><rights>Copyright American Meteorological Society Sep 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-b49f013f82e5d4ecb74534ca995f9d46834705b4e204786853907981200bdfd3</citedby><cites>FETCH-LOGICAL-c335t-b49f013f82e5d4ecb74534ca995f9d46834705b4e204786853907981200bdfd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26831680$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26831680$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Laguë, Marysa M.</creatorcontrib><creatorcontrib>Bonan, Gordon B.</creatorcontrib><creatorcontrib>Swann, Abigail L. S.</creatorcontrib><title>Separating the Impact of Individual Land Surface Properties on the Terrestrial Surface Energy Budget in both the Coupled and Uncoupled Land–Atmosphere System</title><title>Journal of climate</title><description>Changes in the land surface can drive large responses in the atmosphere on local, regional, and global scales. Surface properties control the partitioning of energy within the surface energy budget to fluxes of shortwave and longwave radiation, sensible and latent heat, and ground heat storage. Changes in surface energy fluxes can impact the atmosphere across scales through changes in temperature, cloud cover, and large-scale atmospheric circulation. We test the sensitivity of the atmosphere to global changes in three land surface properties: albedo, evaporative resistance, and surface roughness. We show the impact of changing these surface properties differs drastically between simulations run with an offline land model, compared to coupled land–atmosphere simulations that allow for atmospheric feedbacks associated with land–atmosphere coupling. Atmospheric feedbacks play a critical role in defining the temperature response to changes in albedo and evaporative resistance, particularly in the extratropics. More than 50% of the surface temperature response to changing albedo comes from atmospheric feedbacks in over 80% of land areas. In some regions, cloud feedbacks in response to increased evaporative resistance result in nearly 1 K of additional surface warming. In contrast, the magnitude of surface temperature responses to changes in vegetation height are comparable between offline and coupled simulations. We improve our fundamental understanding of how and why changes in vegetation cover drive responses in the atmosphere, and develop understanding of the role of individual land surface properties in controlling climate across spatial scales—critical to understanding the effects of land-use change on Earth’s climate.</description><subject>Albedo</subject><subject>Albedo (solar)</subject><subject>Atmosphere</subject><subject>Atmospheric circulation</subject><subject>Climate</subject><subject>Climate change</subject><subject>Cloud cover</subject><subject>Clouds</subject><subject>Computer simulation</subject><subject>Energy</subject><subject>Energy budget</subject><subject>Energy storage</subject><subject>Evaporation</subject><subject>Fluxes</subject><subject>Heat storage</subject><subject>Land use</subject><subject>Latent heat</subject><subject>Long wave radiation</subject><subject>Ocean circulation</subject><subject>Plant cover</subject><subject>Precipitation</subject><subject>Properties (attributes)</subject><subject>Radiation</subject><subject>Sensible and latent heat</subject><subject>Sensitivity analysis</subject><subject>Short wave radiation</subject><subject>Simulation</subject><subject>Surface energy</subject><subject>Surface properties</subject><subject>Surface roughness</subject><subject>Surface temperature</subject><subject>Temperature</subject><subject>Vegetation</subject><subject>Vegetation cover</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kU1u2zAQhYmiAeom2WcTgEDXSoYiaZHLxPlzYaAF7K4JShzZMmxRJakC3vUOOUDulpNEitOuBgN8783PI-SCwRVjhbz-PlvMs7uMqQwUy6_YJzJhMocMhMg_kwkoLTJVSPmFfI1xC8DyKcCEvCyxs8Gmpl3TtEE633e2StTXdN665k_jerujC9s6uuxDbSukP4PvMKQGI_Xtu2aFIWBMoRnQf9R9i2F9oLe9W2OiTUtLnzbv9Mz33Q4dHT1_tdVHN454_ft8k_Y-dhsMSJeHmHB_Rk5qu4t4_lFPyerhfjV7yhY_Huezm0VWcS5TVgpdA-O1ylE6gVVZCMlFZbWWtXZiqrgoQJYCcxCFmirJNRR6eBRA6WrHT8m3o20X_O9-OMZsfR_aYaLJueZMawFyoOBIVcHHGLA2XWj2NhwMAzOmYMYUzJ1hyowpGDZILo-SbUw-_OfzYSM2VcDfAM8Ehqs</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Laguë, Marysa M.</creator><creator>Bonan, Gordon B.</creator><creator>Swann, Abigail L. S.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20190901</creationdate><title>Separating the Impact of Individual Land Surface Properties on the Terrestrial Surface Energy Budget in both the Coupled and Uncoupled Land–Atmosphere System</title><author>Laguë, Marysa M. ; Bonan, Gordon B. ; Swann, Abigail L. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-b49f013f82e5d4ecb74534ca995f9d46834705b4e204786853907981200bdfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Albedo</topic><topic>Albedo (solar)</topic><topic>Atmosphere</topic><topic>Atmospheric circulation</topic><topic>Climate</topic><topic>Climate change</topic><topic>Cloud cover</topic><topic>Clouds</topic><topic>Computer simulation</topic><topic>Energy</topic><topic>Energy budget</topic><topic>Energy storage</topic><topic>Evaporation</topic><topic>Fluxes</topic><topic>Heat storage</topic><topic>Land use</topic><topic>Latent heat</topic><topic>Long wave radiation</topic><topic>Ocean circulation</topic><topic>Plant cover</topic><topic>Precipitation</topic><topic>Properties (attributes)</topic><topic>Radiation</topic><topic>Sensible and latent heat</topic><topic>Sensitivity analysis</topic><topic>Short wave radiation</topic><topic>Simulation</topic><topic>Surface energy</topic><topic>Surface properties</topic><topic>Surface roughness</topic><topic>Surface temperature</topic><topic>Temperature</topic><topic>Vegetation</topic><topic>Vegetation cover</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laguë, Marysa M.</creatorcontrib><creatorcontrib>Bonan, Gordon B.</creatorcontrib><creatorcontrib>Swann, Abigail L. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Agriculture Science Database</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laguë, Marysa M.</au><au>Bonan, Gordon B.</au><au>Swann, Abigail L. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Separating the Impact of Individual Land Surface Properties on the Terrestrial Surface Energy Budget in both the Coupled and Uncoupled Land–Atmosphere System</atitle><jtitle>Journal of climate</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>32</volume><issue>18</issue><spage>5725</spage><epage>5744</epage><pages>5725-5744</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>Changes in the land surface can drive large responses in the atmosphere on local, regional, and global scales. Surface properties control the partitioning of energy within the surface energy budget to fluxes of shortwave and longwave radiation, sensible and latent heat, and ground heat storage. Changes in surface energy fluxes can impact the atmosphere across scales through changes in temperature, cloud cover, and large-scale atmospheric circulation. We test the sensitivity of the atmosphere to global changes in three land surface properties: albedo, evaporative resistance, and surface roughness. We show the impact of changing these surface properties differs drastically between simulations run with an offline land model, compared to coupled land–atmosphere simulations that allow for atmospheric feedbacks associated with land–atmosphere coupling. Atmospheric feedbacks play a critical role in defining the temperature response to changes in albedo and evaporative resistance, particularly in the extratropics. More than 50% of the surface temperature response to changing albedo comes from atmospheric feedbacks in over 80% of land areas. In some regions, cloud feedbacks in response to increased evaporative resistance result in nearly 1 K of additional surface warming. In contrast, the magnitude of surface temperature responses to changes in vegetation height are comparable between offline and coupled simulations. We improve our fundamental understanding of how and why changes in vegetation cover drive responses in the atmosphere, and develop understanding of the role of individual land surface properties in controlling climate across spatial scales—critical to understanding the effects of land-use change on Earth’s climate.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JCLI-D-18-0812.1</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0894-8755
ispartof Journal of climate, 2019-09, Vol.32 (18), p.5725-5744
issn 0894-8755
1520-0442
language eng
recordid cdi_proquest_journals_2393199405
source JSTOR Archival Journals and Primary Sources Collection
subjects Albedo
Albedo (solar)
Atmosphere
Atmospheric circulation
Climate
Climate change
Cloud cover
Clouds
Computer simulation
Energy
Energy budget
Energy storage
Evaporation
Fluxes
Heat storage
Land use
Latent heat
Long wave radiation
Ocean circulation
Plant cover
Precipitation
Properties (attributes)
Radiation
Sensible and latent heat
Sensitivity analysis
Short wave radiation
Simulation
Surface energy
Surface properties
Surface roughness
Surface temperature
Temperature
Vegetation
Vegetation cover
title Separating the Impact of Individual Land Surface Properties on the Terrestrial Surface Energy Budget in both the Coupled and Uncoupled Land–Atmosphere System
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A49%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Separating%20the%20Impact%20of%20Individual%20Land%20Surface%20Properties%20on%20the%20Terrestrial%20Surface%20Energy%20Budget%20in%20both%20the%20Coupled%20and%20Uncoupled%20Land%E2%80%93Atmosphere%20System&rft.jtitle=Journal%20of%20climate&rft.au=Lagu%C3%AB,%20Marysa%20M.&rft.date=2019-09-01&rft.volume=32&rft.issue=18&rft.spage=5725&rft.epage=5744&rft.pages=5725-5744&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/JCLI-D-18-0812.1&rft_dat=%3Cjstor_proqu%3E26831680%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-b49f013f82e5d4ecb74534ca995f9d46834705b4e204786853907981200bdfd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2393199405&rft_id=info:pmid/&rft_jstor_id=26831680&rfr_iscdi=true