Loading…
Separating the Impact of Individual Land Surface Properties on the Terrestrial Surface Energy Budget in both the Coupled and Uncoupled Land–Atmosphere System
Changes in the land surface can drive large responses in the atmosphere on local, regional, and global scales. Surface properties control the partitioning of energy within the surface energy budget to fluxes of shortwave and longwave radiation, sensible and latent heat, and ground heat storage. Chan...
Saved in:
Published in: | Journal of climate 2019-09, Vol.32 (18), p.5725-5744 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c335t-b49f013f82e5d4ecb74534ca995f9d46834705b4e204786853907981200bdfd3 |
---|---|
cites | cdi_FETCH-LOGICAL-c335t-b49f013f82e5d4ecb74534ca995f9d46834705b4e204786853907981200bdfd3 |
container_end_page | 5744 |
container_issue | 18 |
container_start_page | 5725 |
container_title | Journal of climate |
container_volume | 32 |
creator | Laguë, Marysa M. Bonan, Gordon B. Swann, Abigail L. S. |
description | Changes in the land surface can drive large responses in the atmosphere on local, regional, and global scales. Surface properties control the partitioning of energy within the surface energy budget to fluxes of shortwave and longwave radiation, sensible and latent heat, and ground heat storage. Changes in surface energy fluxes can impact the atmosphere across scales through changes in temperature, cloud cover, and large-scale atmospheric circulation. We test the sensitivity of the atmosphere to global changes in three land surface properties: albedo, evaporative resistance, and surface roughness. We show the impact of changing these surface properties differs drastically between simulations run with an offline land model, compared to coupled land–atmosphere simulations that allow for atmospheric feedbacks associated with land–atmosphere coupling. Atmospheric feedbacks play a critical role in defining the temperature response to changes in albedo and evaporative resistance, particularly in the extratropics. More than 50% of the surface temperature response to changing albedo comes from atmospheric feedbacks in over 80% of land areas. In some regions, cloud feedbacks in response to increased evaporative resistance result in nearly 1 K of additional surface warming. In contrast, the magnitude of surface temperature responses to changes in vegetation height are comparable between offline and coupled simulations. We improve our fundamental understanding of how and why changes in vegetation cover drive responses in the atmosphere, and develop understanding of the role of individual land surface properties in controlling climate across spatial scales—critical to understanding the effects of land-use change on Earth’s climate. |
doi_str_mv | 10.1175/JCLI-D-18-0812.1 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_journals_2393199405</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26831680</jstor_id><sourcerecordid>26831680</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-b49f013f82e5d4ecb74534ca995f9d46834705b4e204786853907981200bdfd3</originalsourceid><addsrcrecordid>eNo9kU1u2zAQhYmiAeom2WcTgEDXSoYiaZHLxPlzYaAF7K4JShzZMmxRJakC3vUOOUDulpNEitOuBgN8783PI-SCwRVjhbz-PlvMs7uMqQwUy6_YJzJhMocMhMg_kwkoLTJVSPmFfI1xC8DyKcCEvCyxs8Gmpl3TtEE633e2StTXdN665k_jerujC9s6uuxDbSukP4PvMKQGI_Xtu2aFIWBMoRnQf9R9i2F9oLe9W2OiTUtLnzbv9Mz33Q4dHT1_tdVHN454_ft8k_Y-dhsMSJeHmHB_Rk5qu4t4_lFPyerhfjV7yhY_Huezm0VWcS5TVgpdA-O1ylE6gVVZCMlFZbWWtXZiqrgoQJYCcxCFmirJNRR6eBRA6WrHT8m3o20X_O9-OMZsfR_aYaLJueZMawFyoOBIVcHHGLA2XWj2NhwMAzOmYMYUzJ1hyowpGDZILo-SbUw-_OfzYSM2VcDfAM8Ehqs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393199405</pqid></control><display><type>article</type><title>Separating the Impact of Individual Land Surface Properties on the Terrestrial Surface Energy Budget in both the Coupled and Uncoupled Land–Atmosphere System</title><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Laguë, Marysa M. ; Bonan, Gordon B. ; Swann, Abigail L. S.</creator><creatorcontrib>Laguë, Marysa M. ; Bonan, Gordon B. ; Swann, Abigail L. S.</creatorcontrib><description>Changes in the land surface can drive large responses in the atmosphere on local, regional, and global scales. Surface properties control the partitioning of energy within the surface energy budget to fluxes of shortwave and longwave radiation, sensible and latent heat, and ground heat storage. Changes in surface energy fluxes can impact the atmosphere across scales through changes in temperature, cloud cover, and large-scale atmospheric circulation. We test the sensitivity of the atmosphere to global changes in three land surface properties: albedo, evaporative resistance, and surface roughness. We show the impact of changing these surface properties differs drastically between simulations run with an offline land model, compared to coupled land–atmosphere simulations that allow for atmospheric feedbacks associated with land–atmosphere coupling. Atmospheric feedbacks play a critical role in defining the temperature response to changes in albedo and evaporative resistance, particularly in the extratropics. More than 50% of the surface temperature response to changing albedo comes from atmospheric feedbacks in over 80% of land areas. In some regions, cloud feedbacks in response to increased evaporative resistance result in nearly 1 K of additional surface warming. In contrast, the magnitude of surface temperature responses to changes in vegetation height are comparable between offline and coupled simulations. We improve our fundamental understanding of how and why changes in vegetation cover drive responses in the atmosphere, and develop understanding of the role of individual land surface properties in controlling climate across spatial scales—critical to understanding the effects of land-use change on Earth’s climate.</description><identifier>ISSN: 0894-8755</identifier><identifier>EISSN: 1520-0442</identifier><identifier>DOI: 10.1175/JCLI-D-18-0812.1</identifier><language>eng</language><publisher>Boston: American Meteorological Society</publisher><subject>Albedo ; Albedo (solar) ; Atmosphere ; Atmospheric circulation ; Climate ; Climate change ; Cloud cover ; Clouds ; Computer simulation ; Energy ; Energy budget ; Energy storage ; Evaporation ; Fluxes ; Heat storage ; Land use ; Latent heat ; Long wave radiation ; Ocean circulation ; Plant cover ; Precipitation ; Properties (attributes) ; Radiation ; Sensible and latent heat ; Sensitivity analysis ; Short wave radiation ; Simulation ; Surface energy ; Surface properties ; Surface roughness ; Surface temperature ; Temperature ; Vegetation ; Vegetation cover</subject><ispartof>Journal of climate, 2019-09, Vol.32 (18), p.5725-5744</ispartof><rights>2019 American Meteorological Society</rights><rights>Copyright American Meteorological Society Sep 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-b49f013f82e5d4ecb74534ca995f9d46834705b4e204786853907981200bdfd3</citedby><cites>FETCH-LOGICAL-c335t-b49f013f82e5d4ecb74534ca995f9d46834705b4e204786853907981200bdfd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26831680$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26831680$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,58238,58471</link.rule.ids></links><search><creatorcontrib>Laguë, Marysa M.</creatorcontrib><creatorcontrib>Bonan, Gordon B.</creatorcontrib><creatorcontrib>Swann, Abigail L. S.</creatorcontrib><title>Separating the Impact of Individual Land Surface Properties on the Terrestrial Surface Energy Budget in both the Coupled and Uncoupled Land–Atmosphere System</title><title>Journal of climate</title><description>Changes in the land surface can drive large responses in the atmosphere on local, regional, and global scales. Surface properties control the partitioning of energy within the surface energy budget to fluxes of shortwave and longwave radiation, sensible and latent heat, and ground heat storage. Changes in surface energy fluxes can impact the atmosphere across scales through changes in temperature, cloud cover, and large-scale atmospheric circulation. We test the sensitivity of the atmosphere to global changes in three land surface properties: albedo, evaporative resistance, and surface roughness. We show the impact of changing these surface properties differs drastically between simulations run with an offline land model, compared to coupled land–atmosphere simulations that allow for atmospheric feedbacks associated with land–atmosphere coupling. Atmospheric feedbacks play a critical role in defining the temperature response to changes in albedo and evaporative resistance, particularly in the extratropics. More than 50% of the surface temperature response to changing albedo comes from atmospheric feedbacks in over 80% of land areas. In some regions, cloud feedbacks in response to increased evaporative resistance result in nearly 1 K of additional surface warming. In contrast, the magnitude of surface temperature responses to changes in vegetation height are comparable between offline and coupled simulations. We improve our fundamental understanding of how and why changes in vegetation cover drive responses in the atmosphere, and develop understanding of the role of individual land surface properties in controlling climate across spatial scales—critical to understanding the effects of land-use change on Earth’s climate.</description><subject>Albedo</subject><subject>Albedo (solar)</subject><subject>Atmosphere</subject><subject>Atmospheric circulation</subject><subject>Climate</subject><subject>Climate change</subject><subject>Cloud cover</subject><subject>Clouds</subject><subject>Computer simulation</subject><subject>Energy</subject><subject>Energy budget</subject><subject>Energy storage</subject><subject>Evaporation</subject><subject>Fluxes</subject><subject>Heat storage</subject><subject>Land use</subject><subject>Latent heat</subject><subject>Long wave radiation</subject><subject>Ocean circulation</subject><subject>Plant cover</subject><subject>Precipitation</subject><subject>Properties (attributes)</subject><subject>Radiation</subject><subject>Sensible and latent heat</subject><subject>Sensitivity analysis</subject><subject>Short wave radiation</subject><subject>Simulation</subject><subject>Surface energy</subject><subject>Surface properties</subject><subject>Surface roughness</subject><subject>Surface temperature</subject><subject>Temperature</subject><subject>Vegetation</subject><subject>Vegetation cover</subject><issn>0894-8755</issn><issn>1520-0442</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNo9kU1u2zAQhYmiAeom2WcTgEDXSoYiaZHLxPlzYaAF7K4JShzZMmxRJakC3vUOOUDulpNEitOuBgN8783PI-SCwRVjhbz-PlvMs7uMqQwUy6_YJzJhMocMhMg_kwkoLTJVSPmFfI1xC8DyKcCEvCyxs8Gmpl3TtEE633e2StTXdN665k_jerujC9s6uuxDbSukP4PvMKQGI_Xtu2aFIWBMoRnQf9R9i2F9oLe9W2OiTUtLnzbv9Mz33Q4dHT1_tdVHN454_ft8k_Y-dhsMSJeHmHB_Rk5qu4t4_lFPyerhfjV7yhY_Huezm0VWcS5TVgpdA-O1ylE6gVVZCMlFZbWWtXZiqrgoQJYCcxCFmirJNRR6eBRA6WrHT8m3o20X_O9-OMZsfR_aYaLJueZMawFyoOBIVcHHGLA2XWj2NhwMAzOmYMYUzJ1hyowpGDZILo-SbUw-_OfzYSM2VcDfAM8Ehqs</recordid><startdate>20190901</startdate><enddate>20190901</enddate><creator>Laguë, Marysa M.</creator><creator>Bonan, Gordon B.</creator><creator>Swann, Abigail L. S.</creator><general>American Meteorological Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7TG</scope><scope>7UA</scope><scope>7X2</scope><scope>7XB</scope><scope>88F</scope><scope>88I</scope><scope>8AF</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KL.</scope><scope>L.G</scope><scope>M0K</scope><scope>M1Q</scope><scope>M2O</scope><scope>M2P</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>S0X</scope></search><sort><creationdate>20190901</creationdate><title>Separating the Impact of Individual Land Surface Properties on the Terrestrial Surface Energy Budget in both the Coupled and Uncoupled Land–Atmosphere System</title><author>Laguë, Marysa M. ; Bonan, Gordon B. ; Swann, Abigail L. S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-b49f013f82e5d4ecb74534ca995f9d46834705b4e204786853907981200bdfd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Albedo</topic><topic>Albedo (solar)</topic><topic>Atmosphere</topic><topic>Atmospheric circulation</topic><topic>Climate</topic><topic>Climate change</topic><topic>Cloud cover</topic><topic>Clouds</topic><topic>Computer simulation</topic><topic>Energy</topic><topic>Energy budget</topic><topic>Energy storage</topic><topic>Evaporation</topic><topic>Fluxes</topic><topic>Heat storage</topic><topic>Land use</topic><topic>Latent heat</topic><topic>Long wave radiation</topic><topic>Ocean circulation</topic><topic>Plant cover</topic><topic>Precipitation</topic><topic>Properties (attributes)</topic><topic>Radiation</topic><topic>Sensible and latent heat</topic><topic>Sensitivity analysis</topic><topic>Short wave radiation</topic><topic>Simulation</topic><topic>Surface energy</topic><topic>Surface properties</topic><topic>Surface roughness</topic><topic>Surface temperature</topic><topic>Temperature</topic><topic>Vegetation</topic><topic>Vegetation cover</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Laguë, Marysa M.</creatorcontrib><creatorcontrib>Bonan, Gordon B.</creatorcontrib><creatorcontrib>Swann, Abigail L. S.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Military Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>eLibrary</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Agriculture Science Database</collection><collection>Military Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>SIRS Editorial</collection><jtitle>Journal of climate</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Laguë, Marysa M.</au><au>Bonan, Gordon B.</au><au>Swann, Abigail L. S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Separating the Impact of Individual Land Surface Properties on the Terrestrial Surface Energy Budget in both the Coupled and Uncoupled Land–Atmosphere System</atitle><jtitle>Journal of climate</jtitle><date>2019-09-01</date><risdate>2019</risdate><volume>32</volume><issue>18</issue><spage>5725</spage><epage>5744</epage><pages>5725-5744</pages><issn>0894-8755</issn><eissn>1520-0442</eissn><abstract>Changes in the land surface can drive large responses in the atmosphere on local, regional, and global scales. Surface properties control the partitioning of energy within the surface energy budget to fluxes of shortwave and longwave radiation, sensible and latent heat, and ground heat storage. Changes in surface energy fluxes can impact the atmosphere across scales through changes in temperature, cloud cover, and large-scale atmospheric circulation. We test the sensitivity of the atmosphere to global changes in three land surface properties: albedo, evaporative resistance, and surface roughness. We show the impact of changing these surface properties differs drastically between simulations run with an offline land model, compared to coupled land–atmosphere simulations that allow for atmospheric feedbacks associated with land–atmosphere coupling. Atmospheric feedbacks play a critical role in defining the temperature response to changes in albedo and evaporative resistance, particularly in the extratropics. More than 50% of the surface temperature response to changing albedo comes from atmospheric feedbacks in over 80% of land areas. In some regions, cloud feedbacks in response to increased evaporative resistance result in nearly 1 K of additional surface warming. In contrast, the magnitude of surface temperature responses to changes in vegetation height are comparable between offline and coupled simulations. We improve our fundamental understanding of how and why changes in vegetation cover drive responses in the atmosphere, and develop understanding of the role of individual land surface properties in controlling climate across spatial scales—critical to understanding the effects of land-use change on Earth’s climate.</abstract><cop>Boston</cop><pub>American Meteorological Society</pub><doi>10.1175/JCLI-D-18-0812.1</doi><tpages>20</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0894-8755 |
ispartof | Journal of climate, 2019-09, Vol.32 (18), p.5725-5744 |
issn | 0894-8755 1520-0442 |
language | eng |
recordid | cdi_proquest_journals_2393199405 |
source | JSTOR Archival Journals and Primary Sources Collection |
subjects | Albedo Albedo (solar) Atmosphere Atmospheric circulation Climate Climate change Cloud cover Clouds Computer simulation Energy Energy budget Energy storage Evaporation Fluxes Heat storage Land use Latent heat Long wave radiation Ocean circulation Plant cover Precipitation Properties (attributes) Radiation Sensible and latent heat Sensitivity analysis Short wave radiation Simulation Surface energy Surface properties Surface roughness Surface temperature Temperature Vegetation Vegetation cover |
title | Separating the Impact of Individual Land Surface Properties on the Terrestrial Surface Energy Budget in both the Coupled and Uncoupled Land–Atmosphere System |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T18%3A49%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Separating%20the%20Impact%20of%20Individual%20Land%20Surface%20Properties%20on%20the%20Terrestrial%20Surface%20Energy%20Budget%20in%20both%20the%20Coupled%20and%20Uncoupled%20Land%E2%80%93Atmosphere%20System&rft.jtitle=Journal%20of%20climate&rft.au=Lagu%C3%AB,%20Marysa%20M.&rft.date=2019-09-01&rft.volume=32&rft.issue=18&rft.spage=5725&rft.epage=5744&rft.pages=5725-5744&rft.issn=0894-8755&rft.eissn=1520-0442&rft_id=info:doi/10.1175/JCLI-D-18-0812.1&rft_dat=%3Cjstor_proqu%3E26831680%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c335t-b49f013f82e5d4ecb74534ca995f9d46834705b4e204786853907981200bdfd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2393199405&rft_id=info:pmid/&rft_jstor_id=26831680&rfr_iscdi=true |