Loading…

TTNet: Real-time temporal and spatial video analysis of table tennis

We present a neural network TTNet aimed at real-time processing of high-resolution table tennis videos, providing both temporal (events spotting) and spatial (ball detection and semantic segmentation) data. This approach gives core information for reasoning score updates by an auto-referee system. W...

Full description

Saved in:
Bibliographic Details
Published in:arXiv.org 2020-04
Main Authors: Voeikov, Roman, Falaleev, Nikolay, Baikulov, Ruslan
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Voeikov, Roman
Falaleev, Nikolay
Baikulov, Ruslan
description We present a neural network TTNet aimed at real-time processing of high-resolution table tennis videos, providing both temporal (events spotting) and spatial (ball detection and semantic segmentation) data. This approach gives core information for reasoning score updates by an auto-referee system. We also publish a multi-task dataset OpenTTGames with videos of table tennis games in 120 fps labeled with events, semantic segmentation masks, and ball coordinates for evaluation of multi-task approaches, primarily oriented on spotting of quick events and small objects tracking. TTNet demonstrated 97.0% accuracy in game events spotting along with 2 pixels RMSE in ball detection with 97.5% accuracy on the test part of the presented dataset. The proposed network allows the processing of downscaled full HD videos with inference time below 6 ms per input tensor on a machine with a single consumer-grade GPU. Thus, we are contributing to the development of real-time multi-task deep learning applications and presenting approach, which is potentially capable of substituting manual data collection by sports scouts, providing support for referees' decision-making, and gathering extra information about the game process.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2393247354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2393247354</sourcerecordid><originalsourceid>FETCH-proquest_journals_23932473543</originalsourceid><addsrcrecordid>eNqNi80KgkAURocgSMp3GGgt2L1jVtt-aNUi3MsNrzAyOuYdg94-gx6g1Xc4nG-mIkDcJDsDsFCxSJOmKWxzyDKM1KkobhwO-s7kkmBb1oHb3g_kNHWVlp6CnfhlK_aTIfcWK9rXOtDDfeOus7JS85qccPzbpVpfzsXxmvSDf44soWz8OExnKQH3CCbHzOB_1QfwtzoU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393247354</pqid></control><display><type>article</type><title>TTNet: Real-time temporal and spatial video analysis of table tennis</title><source>Publicly Available Content Database</source><creator>Voeikov, Roman ; Falaleev, Nikolay ; Baikulov, Ruslan</creator><creatorcontrib>Voeikov, Roman ; Falaleev, Nikolay ; Baikulov, Ruslan</creatorcontrib><description>We present a neural network TTNet aimed at real-time processing of high-resolution table tennis videos, providing both temporal (events spotting) and spatial (ball detection and semantic segmentation) data. This approach gives core information for reasoning score updates by an auto-referee system. We also publish a multi-task dataset OpenTTGames with videos of table tennis games in 120 fps labeled with events, semantic segmentation masks, and ball coordinates for evaluation of multi-task approaches, primarily oriented on spotting of quick events and small objects tracking. TTNet demonstrated 97.0% accuracy in game events spotting along with 2 pixels RMSE in ball detection with 97.5% accuracy on the test part of the presented dataset. The proposed network allows the processing of downscaled full HD videos with inference time below 6 ms per input tensor on a machine with a single consumer-grade GPU. Thus, we are contributing to the development of real-time multi-task deep learning applications and presenting approach, which is potentially capable of substituting manual data collection by sports scouts, providing support for referees' decision-making, and gathering extra information about the game process.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Data collection ; Datasets ; Decision making ; Machine learning ; Masks ; Neural networks ; Real time ; Semantic segmentation ; Semantics ; Table tennis ; Tennis ; Tensors</subject><ispartof>arXiv.org, 2020-04</ispartof><rights>2020. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2393247354?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>776,780,25731,36989,44566</link.rule.ids></links><search><creatorcontrib>Voeikov, Roman</creatorcontrib><creatorcontrib>Falaleev, Nikolay</creatorcontrib><creatorcontrib>Baikulov, Ruslan</creatorcontrib><title>TTNet: Real-time temporal and spatial video analysis of table tennis</title><title>arXiv.org</title><description>We present a neural network TTNet aimed at real-time processing of high-resolution table tennis videos, providing both temporal (events spotting) and spatial (ball detection and semantic segmentation) data. This approach gives core information for reasoning score updates by an auto-referee system. We also publish a multi-task dataset OpenTTGames with videos of table tennis games in 120 fps labeled with events, semantic segmentation masks, and ball coordinates for evaluation of multi-task approaches, primarily oriented on spotting of quick events and small objects tracking. TTNet demonstrated 97.0% accuracy in game events spotting along with 2 pixels RMSE in ball detection with 97.5% accuracy on the test part of the presented dataset. The proposed network allows the processing of downscaled full HD videos with inference time below 6 ms per input tensor on a machine with a single consumer-grade GPU. Thus, we are contributing to the development of real-time multi-task deep learning applications and presenting approach, which is potentially capable of substituting manual data collection by sports scouts, providing support for referees' decision-making, and gathering extra information about the game process.</description><subject>Data collection</subject><subject>Datasets</subject><subject>Decision making</subject><subject>Machine learning</subject><subject>Masks</subject><subject>Neural networks</subject><subject>Real time</subject><subject>Semantic segmentation</subject><subject>Semantics</subject><subject>Table tennis</subject><subject>Tennis</subject><subject>Tensors</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNqNi80KgkAURocgSMp3GGgt2L1jVtt-aNUi3MsNrzAyOuYdg94-gx6g1Xc4nG-mIkDcJDsDsFCxSJOmKWxzyDKM1KkobhwO-s7kkmBb1oHb3g_kNHWVlp6CnfhlK_aTIfcWK9rXOtDDfeOus7JS85qccPzbpVpfzsXxmvSDf44soWz8OExnKQH3CCbHzOB_1QfwtzoU</recordid><startdate>20200421</startdate><enddate>20200421</enddate><creator>Voeikov, Roman</creator><creator>Falaleev, Nikolay</creator><creator>Baikulov, Ruslan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20200421</creationdate><title>TTNet: Real-time temporal and spatial video analysis of table tennis</title><author>Voeikov, Roman ; Falaleev, Nikolay ; Baikulov, Ruslan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_23932473543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Data collection</topic><topic>Datasets</topic><topic>Decision making</topic><topic>Machine learning</topic><topic>Masks</topic><topic>Neural networks</topic><topic>Real time</topic><topic>Semantic segmentation</topic><topic>Semantics</topic><topic>Table tennis</topic><topic>Tennis</topic><topic>Tensors</topic><toplevel>online_resources</toplevel><creatorcontrib>Voeikov, Roman</creatorcontrib><creatorcontrib>Falaleev, Nikolay</creatorcontrib><creatorcontrib>Baikulov, Ruslan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Voeikov, Roman</au><au>Falaleev, Nikolay</au><au>Baikulov, Ruslan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>TTNet: Real-time temporal and spatial video analysis of table tennis</atitle><jtitle>arXiv.org</jtitle><date>2020-04-21</date><risdate>2020</risdate><eissn>2331-8422</eissn><abstract>We present a neural network TTNet aimed at real-time processing of high-resolution table tennis videos, providing both temporal (events spotting) and spatial (ball detection and semantic segmentation) data. This approach gives core information for reasoning score updates by an auto-referee system. We also publish a multi-task dataset OpenTTGames with videos of table tennis games in 120 fps labeled with events, semantic segmentation masks, and ball coordinates for evaluation of multi-task approaches, primarily oriented on spotting of quick events and small objects tracking. TTNet demonstrated 97.0% accuracy in game events spotting along with 2 pixels RMSE in ball detection with 97.5% accuracy on the test part of the presented dataset. The proposed network allows the processing of downscaled full HD videos with inference time below 6 ms per input tensor on a machine with a single consumer-grade GPU. Thus, we are contributing to the development of real-time multi-task deep learning applications and presenting approach, which is potentially capable of substituting manual data collection by sports scouts, providing support for referees' decision-making, and gathering extra information about the game process.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2020-04
issn 2331-8422
language eng
recordid cdi_proquest_journals_2393247354
source Publicly Available Content Database
subjects Data collection
Datasets
Decision making
Machine learning
Masks
Neural networks
Real time
Semantic segmentation
Semantics
Table tennis
Tennis
Tensors
title TTNet: Real-time temporal and spatial video analysis of table tennis
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T21%3A03%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=TTNet:%20Real-time%20temporal%20and%20spatial%20video%20analysis%20of%20table%20tennis&rft.jtitle=arXiv.org&rft.au=Voeikov,%20Roman&rft.date=2020-04-21&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2393247354%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-proquest_journals_23932473543%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2393247354&rft_id=info:pmid/&rfr_iscdi=true