Loading…
Ghrelin‐insulin‐like growth factor‐1 axis is activated via autonomic neural circuits in the non‐alcoholic fatty liver disease
Background The correlation of the growth hormone (GH) and insulin‐like growth factor‐1 (IGF‐1) with non‐alcoholic fatty liver disease (NAFLD) has been reported in epidemiological studies. However, the mechanisms of molecular and inter‐organ systems that render these factors to influence on NAFLD hav...
Saved in:
Published in: | Neurogastroenterology and motility 2020-05, Vol.32 (5), p.e13799-n/a |
---|---|
Main Authors: | , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4709-874f539d713ee5cc4fda881acf5ac32e2e821c7841d398428b058018cc5f3f143 |
---|---|
cites | cdi_FETCH-LOGICAL-c4709-874f539d713ee5cc4fda881acf5ac32e2e821c7841d398428b058018cc5f3f143 |
container_end_page | n/a |
container_issue | 5 |
container_start_page | e13799 |
container_title | Neurogastroenterology and motility |
container_volume | 32 |
creator | Nagoya, Takuro Kamimura, Kenya Inoue, Ryosuke Ko, Masayoshi Owaki, Takashi Niwa, Yusuke Sakai, Norihiro Setsu, Toru Sakamaki, Akira Yokoo, Takeshi Kamimura, Hiroteru Nakamura, Yuka Ueno, Masaki Terai, Shuji |
description | Background
The correlation of the growth hormone (GH) and insulin‐like growth factor‐1 (IGF‐1) with non‐alcoholic fatty liver disease (NAFLD) has been reported in epidemiological studies. However, the mechanisms of molecular and inter‐organ systems that render these factors to influence on NAFLD have not been elucidated. In this study, we examined the induction of ghrelin which is the GH‐releasing hormone and IGF‐1, and involvement of autonomic neural circuits, in the pathogenesis of NAFLD.
Methods
The expression of gastric and hypothalamic ghrelin, neural activation in the brain, and serum IGF‐1 were examined in NAFLD models of choline‐deficient defined l‐amino‐acid diet‐fed, melanocortin 4 receptor knockout mice, and partial hepatectomy mice with or without the blockades of autonomic nerves to test the contribution of neural circuits connecting the brain, liver, and stomach.
Key Results
The fatty changes in the liver increased the expression of gastric ghrelin through the autonomic pathways which sends the neural signals to the arcuate nucleus in the hypothalamus through the afferent vagal nerve which reached the pituitary gland to release GH and then stimulate the IGF‐1 release from the liver. In addition, high levels of ghrelin expression in the arcuate nucleus were correlated with NAFLD progression regardless of the circuits.
Conclusions
Our study demonstrated that the fatty liver stimulates the autonomic nervous signal circuits which suppress the progression of the disease by activating the gastric ghrelin expression, the neural signal transduction in the brain, and the release of IGF‐1 from the liver.
The neural signals from the liver with fatty infiltration activates the release of gastric ghrelin, leading to the activation of neural signals to the brain and release of IGF‐1 from the liver. The hypothalamic ghrelin may contribute to appetite. |
doi_str_mv | 10.1111/nmo.13799 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2393280263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2393280263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4709-874f539d713ee5cc4fda881acf5ac32e2e821c7841d398428b058018cc5f3f143</originalsourceid><addsrcrecordid>eNp1kLlOxDAQhi0E4lgoeAFkiYoii484cUqEuCSOBurIOGPWkI3BdnbZjoaeZ-RJ8BKgY2RpRqNP38g_QruUjGmqw27qxpSXVbWCNikvRMYqyVaXsyAZrZjYQFshPBJCCpYX62iD00rmBReb6P1s4qG13efbh-1CP0ytfQL84N08TrBROjqflhSrVxtwemljZypCg2dWYdVH17mp1biD3qsWa-t1b2NCOxwngDu3dKpWu4lrE2ZUjAvc2hl43NgAKsA2WjOqDbDz00fo7vTk9vg8u7w5uzg-usx0XpIqk2VuBK-aknIAoXVuGiUlVdoIpTkDBpJRXcqcNjx9kMl7IiShUmthuKE5H6H9wfvs3UsPIdaPrvddOlkzXnEmCSt4og4GSnsXggdTP3s7VX5RU1IvA69T4PV34Ind-zH291No_sjfhBNwOABz28Lif1N9fXUzKL8Al5CQJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393280263</pqid></control><display><type>article</type><title>Ghrelin‐insulin‐like growth factor‐1 axis is activated via autonomic neural circuits in the non‐alcoholic fatty liver disease</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Nagoya, Takuro ; Kamimura, Kenya ; Inoue, Ryosuke ; Ko, Masayoshi ; Owaki, Takashi ; Niwa, Yusuke ; Sakai, Norihiro ; Setsu, Toru ; Sakamaki, Akira ; Yokoo, Takeshi ; Kamimura, Hiroteru ; Nakamura, Yuka ; Ueno, Masaki ; Terai, Shuji</creator><creatorcontrib>Nagoya, Takuro ; Kamimura, Kenya ; Inoue, Ryosuke ; Ko, Masayoshi ; Owaki, Takashi ; Niwa, Yusuke ; Sakai, Norihiro ; Setsu, Toru ; Sakamaki, Akira ; Yokoo, Takeshi ; Kamimura, Hiroteru ; Nakamura, Yuka ; Ueno, Masaki ; Terai, Shuji</creatorcontrib><description>Background
The correlation of the growth hormone (GH) and insulin‐like growth factor‐1 (IGF‐1) with non‐alcoholic fatty liver disease (NAFLD) has been reported in epidemiological studies. However, the mechanisms of molecular and inter‐organ systems that render these factors to influence on NAFLD have not been elucidated. In this study, we examined the induction of ghrelin which is the GH‐releasing hormone and IGF‐1, and involvement of autonomic neural circuits, in the pathogenesis of NAFLD.
Methods
The expression of gastric and hypothalamic ghrelin, neural activation in the brain, and serum IGF‐1 were examined in NAFLD models of choline‐deficient defined l‐amino‐acid diet‐fed, melanocortin 4 receptor knockout mice, and partial hepatectomy mice with or without the blockades of autonomic nerves to test the contribution of neural circuits connecting the brain, liver, and stomach.
Key Results
The fatty changes in the liver increased the expression of gastric ghrelin through the autonomic pathways which sends the neural signals to the arcuate nucleus in the hypothalamus through the afferent vagal nerve which reached the pituitary gland to release GH and then stimulate the IGF‐1 release from the liver. In addition, high levels of ghrelin expression in the arcuate nucleus were correlated with NAFLD progression regardless of the circuits.
Conclusions
Our study demonstrated that the fatty liver stimulates the autonomic nervous signal circuits which suppress the progression of the disease by activating the gastric ghrelin expression, the neural signal transduction in the brain, and the release of IGF‐1 from the liver.
The neural signals from the liver with fatty infiltration activates the release of gastric ghrelin, leading to the activation of neural signals to the brain and release of IGF‐1 from the liver. The hypothalamic ghrelin may contribute to appetite.</description><identifier>ISSN: 1350-1925</identifier><identifier>EISSN: 1365-2982</identifier><identifier>DOI: 10.1111/nmo.13799</identifier><identifier>PMID: 31984635</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Animals ; Arcuate nucleus ; autonomic nervous system ; Autonomic Nervous System - metabolism ; Autonomic Nervous System - pathology ; Choline ; Circuits ; Epidemiology ; Fatty liver ; Fatty Liver - metabolism ; Fatty Liver - pathology ; Gastric Mucosa - metabolism ; Gastric Mucosa - pathology ; Ghrelin ; Ghrelin - metabolism ; Growth factors ; Growth hormones ; Hepatectomy ; Hypothalamus ; Hypothalamus - metabolism ; IGF‐1 ; Insulin ; Insulin-Like Growth Factor I - metabolism ; Insulin-like growth factors ; Liver diseases ; Male ; Melanocortin ; Mice, Inbred C57BL ; Nerve Block ; neural circuits ; Neural networks ; Non-alcoholic Fatty Liver Disease - metabolism ; Non-alcoholic Fatty Liver Disease - pathology ; non‐alcoholic liver disease ; Pituitary ; Sensory neurons ; Signal transduction ; Stomach - innervation ; Stomach - pathology ; Vagus nerve ; Vagus Nerve - pathology</subject><ispartof>Neurogastroenterology and motility, 2020-05, Vol.32 (5), p.e13799-n/a</ispartof><rights>2020 John Wiley & Sons Ltd</rights><rights>2020 John Wiley & Sons Ltd.</rights><rights>Copyright © 2020 John Wiley & Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4709-874f539d713ee5cc4fda881acf5ac32e2e821c7841d398428b058018cc5f3f143</citedby><cites>FETCH-LOGICAL-c4709-874f539d713ee5cc4fda881acf5ac32e2e821c7841d398428b058018cc5f3f143</cites><orcidid>0000-0001-7182-4400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31984635$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nagoya, Takuro</creatorcontrib><creatorcontrib>Kamimura, Kenya</creatorcontrib><creatorcontrib>Inoue, Ryosuke</creatorcontrib><creatorcontrib>Ko, Masayoshi</creatorcontrib><creatorcontrib>Owaki, Takashi</creatorcontrib><creatorcontrib>Niwa, Yusuke</creatorcontrib><creatorcontrib>Sakai, Norihiro</creatorcontrib><creatorcontrib>Setsu, Toru</creatorcontrib><creatorcontrib>Sakamaki, Akira</creatorcontrib><creatorcontrib>Yokoo, Takeshi</creatorcontrib><creatorcontrib>Kamimura, Hiroteru</creatorcontrib><creatorcontrib>Nakamura, Yuka</creatorcontrib><creatorcontrib>Ueno, Masaki</creatorcontrib><creatorcontrib>Terai, Shuji</creatorcontrib><title>Ghrelin‐insulin‐like growth factor‐1 axis is activated via autonomic neural circuits in the non‐alcoholic fatty liver disease</title><title>Neurogastroenterology and motility</title><addtitle>Neurogastroenterol Motil</addtitle><description>Background
The correlation of the growth hormone (GH) and insulin‐like growth factor‐1 (IGF‐1) with non‐alcoholic fatty liver disease (NAFLD) has been reported in epidemiological studies. However, the mechanisms of molecular and inter‐organ systems that render these factors to influence on NAFLD have not been elucidated. In this study, we examined the induction of ghrelin which is the GH‐releasing hormone and IGF‐1, and involvement of autonomic neural circuits, in the pathogenesis of NAFLD.
Methods
The expression of gastric and hypothalamic ghrelin, neural activation in the brain, and serum IGF‐1 were examined in NAFLD models of choline‐deficient defined l‐amino‐acid diet‐fed, melanocortin 4 receptor knockout mice, and partial hepatectomy mice with or without the blockades of autonomic nerves to test the contribution of neural circuits connecting the brain, liver, and stomach.
Key Results
The fatty changes in the liver increased the expression of gastric ghrelin through the autonomic pathways which sends the neural signals to the arcuate nucleus in the hypothalamus through the afferent vagal nerve which reached the pituitary gland to release GH and then stimulate the IGF‐1 release from the liver. In addition, high levels of ghrelin expression in the arcuate nucleus were correlated with NAFLD progression regardless of the circuits.
Conclusions
Our study demonstrated that the fatty liver stimulates the autonomic nervous signal circuits which suppress the progression of the disease by activating the gastric ghrelin expression, the neural signal transduction in the brain, and the release of IGF‐1 from the liver.
The neural signals from the liver with fatty infiltration activates the release of gastric ghrelin, leading to the activation of neural signals to the brain and release of IGF‐1 from the liver. The hypothalamic ghrelin may contribute to appetite.</description><subject>Animals</subject><subject>Arcuate nucleus</subject><subject>autonomic nervous system</subject><subject>Autonomic Nervous System - metabolism</subject><subject>Autonomic Nervous System - pathology</subject><subject>Choline</subject><subject>Circuits</subject><subject>Epidemiology</subject><subject>Fatty liver</subject><subject>Fatty Liver - metabolism</subject><subject>Fatty Liver - pathology</subject><subject>Gastric Mucosa - metabolism</subject><subject>Gastric Mucosa - pathology</subject><subject>Ghrelin</subject><subject>Ghrelin - metabolism</subject><subject>Growth factors</subject><subject>Growth hormones</subject><subject>Hepatectomy</subject><subject>Hypothalamus</subject><subject>Hypothalamus - metabolism</subject><subject>IGF‐1</subject><subject>Insulin</subject><subject>Insulin-Like Growth Factor I - metabolism</subject><subject>Insulin-like growth factors</subject><subject>Liver diseases</subject><subject>Male</subject><subject>Melanocortin</subject><subject>Mice, Inbred C57BL</subject><subject>Nerve Block</subject><subject>neural circuits</subject><subject>Neural networks</subject><subject>Non-alcoholic Fatty Liver Disease - metabolism</subject><subject>Non-alcoholic Fatty Liver Disease - pathology</subject><subject>non‐alcoholic liver disease</subject><subject>Pituitary</subject><subject>Sensory neurons</subject><subject>Signal transduction</subject><subject>Stomach - innervation</subject><subject>Stomach - pathology</subject><subject>Vagus nerve</subject><subject>Vagus Nerve - pathology</subject><issn>1350-1925</issn><issn>1365-2982</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kLlOxDAQhi0E4lgoeAFkiYoii484cUqEuCSOBurIOGPWkI3BdnbZjoaeZ-RJ8BKgY2RpRqNP38g_QruUjGmqw27qxpSXVbWCNikvRMYqyVaXsyAZrZjYQFshPBJCCpYX62iD00rmBReb6P1s4qG13efbh-1CP0ytfQL84N08TrBROjqflhSrVxtwemljZypCg2dWYdVH17mp1biD3qsWa-t1b2NCOxwngDu3dKpWu4lrE2ZUjAvc2hl43NgAKsA2WjOqDbDz00fo7vTk9vg8u7w5uzg-usx0XpIqk2VuBK-aknIAoXVuGiUlVdoIpTkDBpJRXcqcNjx9kMl7IiShUmthuKE5H6H9wfvs3UsPIdaPrvddOlkzXnEmCSt4og4GSnsXggdTP3s7VX5RU1IvA69T4PV34Ind-zH291No_sjfhBNwOABz28Lif1N9fXUzKL8Al5CQJA</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Nagoya, Takuro</creator><creator>Kamimura, Kenya</creator><creator>Inoue, Ryosuke</creator><creator>Ko, Masayoshi</creator><creator>Owaki, Takashi</creator><creator>Niwa, Yusuke</creator><creator>Sakai, Norihiro</creator><creator>Setsu, Toru</creator><creator>Sakamaki, Akira</creator><creator>Yokoo, Takeshi</creator><creator>Kamimura, Hiroteru</creator><creator>Nakamura, Yuka</creator><creator>Ueno, Masaki</creator><creator>Terai, Shuji</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0001-7182-4400</orcidid></search><sort><creationdate>202005</creationdate><title>Ghrelin‐insulin‐like growth factor‐1 axis is activated via autonomic neural circuits in the non‐alcoholic fatty liver disease</title><author>Nagoya, Takuro ; Kamimura, Kenya ; Inoue, Ryosuke ; Ko, Masayoshi ; Owaki, Takashi ; Niwa, Yusuke ; Sakai, Norihiro ; Setsu, Toru ; Sakamaki, Akira ; Yokoo, Takeshi ; Kamimura, Hiroteru ; Nakamura, Yuka ; Ueno, Masaki ; Terai, Shuji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4709-874f539d713ee5cc4fda881acf5ac32e2e821c7841d398428b058018cc5f3f143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Arcuate nucleus</topic><topic>autonomic nervous system</topic><topic>Autonomic Nervous System - metabolism</topic><topic>Autonomic Nervous System - pathology</topic><topic>Choline</topic><topic>Circuits</topic><topic>Epidemiology</topic><topic>Fatty liver</topic><topic>Fatty Liver - metabolism</topic><topic>Fatty Liver - pathology</topic><topic>Gastric Mucosa - metabolism</topic><topic>Gastric Mucosa - pathology</topic><topic>Ghrelin</topic><topic>Ghrelin - metabolism</topic><topic>Growth factors</topic><topic>Growth hormones</topic><topic>Hepatectomy</topic><topic>Hypothalamus</topic><topic>Hypothalamus - metabolism</topic><topic>IGF‐1</topic><topic>Insulin</topic><topic>Insulin-Like Growth Factor I - metabolism</topic><topic>Insulin-like growth factors</topic><topic>Liver diseases</topic><topic>Male</topic><topic>Melanocortin</topic><topic>Mice, Inbred C57BL</topic><topic>Nerve Block</topic><topic>neural circuits</topic><topic>Neural networks</topic><topic>Non-alcoholic Fatty Liver Disease - metabolism</topic><topic>Non-alcoholic Fatty Liver Disease - pathology</topic><topic>non‐alcoholic liver disease</topic><topic>Pituitary</topic><topic>Sensory neurons</topic><topic>Signal transduction</topic><topic>Stomach - innervation</topic><topic>Stomach - pathology</topic><topic>Vagus nerve</topic><topic>Vagus Nerve - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagoya, Takuro</creatorcontrib><creatorcontrib>Kamimura, Kenya</creatorcontrib><creatorcontrib>Inoue, Ryosuke</creatorcontrib><creatorcontrib>Ko, Masayoshi</creatorcontrib><creatorcontrib>Owaki, Takashi</creatorcontrib><creatorcontrib>Niwa, Yusuke</creatorcontrib><creatorcontrib>Sakai, Norihiro</creatorcontrib><creatorcontrib>Setsu, Toru</creatorcontrib><creatorcontrib>Sakamaki, Akira</creatorcontrib><creatorcontrib>Yokoo, Takeshi</creatorcontrib><creatorcontrib>Kamimura, Hiroteru</creatorcontrib><creatorcontrib>Nakamura, Yuka</creatorcontrib><creatorcontrib>Ueno, Masaki</creatorcontrib><creatorcontrib>Terai, Shuji</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><jtitle>Neurogastroenterology and motility</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagoya, Takuro</au><au>Kamimura, Kenya</au><au>Inoue, Ryosuke</au><au>Ko, Masayoshi</au><au>Owaki, Takashi</au><au>Niwa, Yusuke</au><au>Sakai, Norihiro</au><au>Setsu, Toru</au><au>Sakamaki, Akira</au><au>Yokoo, Takeshi</au><au>Kamimura, Hiroteru</au><au>Nakamura, Yuka</au><au>Ueno, Masaki</au><au>Terai, Shuji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ghrelin‐insulin‐like growth factor‐1 axis is activated via autonomic neural circuits in the non‐alcoholic fatty liver disease</atitle><jtitle>Neurogastroenterology and motility</jtitle><addtitle>Neurogastroenterol Motil</addtitle><date>2020-05</date><risdate>2020</risdate><volume>32</volume><issue>5</issue><spage>e13799</spage><epage>n/a</epage><pages>e13799-n/a</pages><issn>1350-1925</issn><eissn>1365-2982</eissn><abstract>Background
The correlation of the growth hormone (GH) and insulin‐like growth factor‐1 (IGF‐1) with non‐alcoholic fatty liver disease (NAFLD) has been reported in epidemiological studies. However, the mechanisms of molecular and inter‐organ systems that render these factors to influence on NAFLD have not been elucidated. In this study, we examined the induction of ghrelin which is the GH‐releasing hormone and IGF‐1, and involvement of autonomic neural circuits, in the pathogenesis of NAFLD.
Methods
The expression of gastric and hypothalamic ghrelin, neural activation in the brain, and serum IGF‐1 were examined in NAFLD models of choline‐deficient defined l‐amino‐acid diet‐fed, melanocortin 4 receptor knockout mice, and partial hepatectomy mice with or without the blockades of autonomic nerves to test the contribution of neural circuits connecting the brain, liver, and stomach.
Key Results
The fatty changes in the liver increased the expression of gastric ghrelin through the autonomic pathways which sends the neural signals to the arcuate nucleus in the hypothalamus through the afferent vagal nerve which reached the pituitary gland to release GH and then stimulate the IGF‐1 release from the liver. In addition, high levels of ghrelin expression in the arcuate nucleus were correlated with NAFLD progression regardless of the circuits.
Conclusions
Our study demonstrated that the fatty liver stimulates the autonomic nervous signal circuits which suppress the progression of the disease by activating the gastric ghrelin expression, the neural signal transduction in the brain, and the release of IGF‐1 from the liver.
The neural signals from the liver with fatty infiltration activates the release of gastric ghrelin, leading to the activation of neural signals to the brain and release of IGF‐1 from the liver. The hypothalamic ghrelin may contribute to appetite.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31984635</pmid><doi>10.1111/nmo.13799</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7182-4400</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1350-1925 |
ispartof | Neurogastroenterology and motility, 2020-05, Vol.32 (5), p.e13799-n/a |
issn | 1350-1925 1365-2982 |
language | eng |
recordid | cdi_proquest_journals_2393280263 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Animals Arcuate nucleus autonomic nervous system Autonomic Nervous System - metabolism Autonomic Nervous System - pathology Choline Circuits Epidemiology Fatty liver Fatty Liver - metabolism Fatty Liver - pathology Gastric Mucosa - metabolism Gastric Mucosa - pathology Ghrelin Ghrelin - metabolism Growth factors Growth hormones Hepatectomy Hypothalamus Hypothalamus - metabolism IGF‐1 Insulin Insulin-Like Growth Factor I - metabolism Insulin-like growth factors Liver diseases Male Melanocortin Mice, Inbred C57BL Nerve Block neural circuits Neural networks Non-alcoholic Fatty Liver Disease - metabolism Non-alcoholic Fatty Liver Disease - pathology non‐alcoholic liver disease Pituitary Sensory neurons Signal transduction Stomach - innervation Stomach - pathology Vagus nerve Vagus Nerve - pathology |
title | Ghrelin‐insulin‐like growth factor‐1 axis is activated via autonomic neural circuits in the non‐alcoholic fatty liver disease |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A11%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ghrelin%E2%80%90insulin%E2%80%90like%20growth%20factor%E2%80%901%20axis%20is%20activated%20via%20autonomic%20neural%20circuits%20in%20the%20non%E2%80%90alcoholic%20fatty%20liver%20disease&rft.jtitle=Neurogastroenterology%20and%20motility&rft.au=Nagoya,%20Takuro&rft.date=2020-05&rft.volume=32&rft.issue=5&rft.spage=e13799&rft.epage=n/a&rft.pages=e13799-n/a&rft.issn=1350-1925&rft.eissn=1365-2982&rft_id=info:doi/10.1111/nmo.13799&rft_dat=%3Cproquest_cross%3E2393280263%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4709-874f539d713ee5cc4fda881acf5ac32e2e821c7841d398428b058018cc5f3f143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2393280263&rft_id=info:pmid/31984635&rfr_iscdi=true |