Loading…

Ghrelin‐insulin‐like growth factor‐1 axis is activated via autonomic neural circuits in the non‐alcoholic fatty liver disease

Background The correlation of the growth hormone (GH) and insulin‐like growth factor‐1 (IGF‐1) with non‐alcoholic fatty liver disease (NAFLD) has been reported in epidemiological studies. However, the mechanisms of molecular and inter‐organ systems that render these factors to influence on NAFLD hav...

Full description

Saved in:
Bibliographic Details
Published in:Neurogastroenterology and motility 2020-05, Vol.32 (5), p.e13799-n/a
Main Authors: Nagoya, Takuro, Kamimura, Kenya, Inoue, Ryosuke, Ko, Masayoshi, Owaki, Takashi, Niwa, Yusuke, Sakai, Norihiro, Setsu, Toru, Sakamaki, Akira, Yokoo, Takeshi, Kamimura, Hiroteru, Nakamura, Yuka, Ueno, Masaki, Terai, Shuji
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4709-874f539d713ee5cc4fda881acf5ac32e2e821c7841d398428b058018cc5f3f143
cites cdi_FETCH-LOGICAL-c4709-874f539d713ee5cc4fda881acf5ac32e2e821c7841d398428b058018cc5f3f143
container_end_page n/a
container_issue 5
container_start_page e13799
container_title Neurogastroenterology and motility
container_volume 32
creator Nagoya, Takuro
Kamimura, Kenya
Inoue, Ryosuke
Ko, Masayoshi
Owaki, Takashi
Niwa, Yusuke
Sakai, Norihiro
Setsu, Toru
Sakamaki, Akira
Yokoo, Takeshi
Kamimura, Hiroteru
Nakamura, Yuka
Ueno, Masaki
Terai, Shuji
description Background The correlation of the growth hormone (GH) and insulin‐like growth factor‐1 (IGF‐1) with non‐alcoholic fatty liver disease (NAFLD) has been reported in epidemiological studies. However, the mechanisms of molecular and inter‐organ systems that render these factors to influence on NAFLD have not been elucidated. In this study, we examined the induction of ghrelin which is the GH‐releasing hormone and IGF‐1, and involvement of autonomic neural circuits, in the pathogenesis of NAFLD. Methods The expression of gastric and hypothalamic ghrelin, neural activation in the brain, and serum IGF‐1 were examined in NAFLD models of choline‐deficient defined l‐amino‐acid diet‐fed, melanocortin 4 receptor knockout mice, and partial hepatectomy mice with or without the blockades of autonomic nerves to test the contribution of neural circuits connecting the brain, liver, and stomach. Key Results The fatty changes in the liver increased the expression of gastric ghrelin through the autonomic pathways which sends the neural signals to the arcuate nucleus in the hypothalamus through the afferent vagal nerve which reached the pituitary gland to release GH and then stimulate the IGF‐1 release from the liver. In addition, high levels of ghrelin expression in the arcuate nucleus were correlated with NAFLD progression regardless of the circuits. Conclusions Our study demonstrated that the fatty liver stimulates the autonomic nervous signal circuits which suppress the progression of the disease by activating the gastric ghrelin expression, the neural signal transduction in the brain, and the release of IGF‐1 from the liver. The neural signals from the liver with fatty infiltration activates the release of gastric ghrelin, leading to the activation of neural signals to the brain and release of IGF‐1 from the liver. The hypothalamic ghrelin may contribute to appetite.
doi_str_mv 10.1111/nmo.13799
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2393280263</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2393280263</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4709-874f539d713ee5cc4fda881acf5ac32e2e821c7841d398428b058018cc5f3f143</originalsourceid><addsrcrecordid>eNp1kLlOxDAQhi0E4lgoeAFkiYoii484cUqEuCSOBurIOGPWkI3BdnbZjoaeZ-RJ8BKgY2RpRqNP38g_QruUjGmqw27qxpSXVbWCNikvRMYqyVaXsyAZrZjYQFshPBJCCpYX62iD00rmBReb6P1s4qG13efbh-1CP0ytfQL84N08TrBROjqflhSrVxtwemljZypCg2dWYdVH17mp1biD3qsWa-t1b2NCOxwngDu3dKpWu4lrE2ZUjAvc2hl43NgAKsA2WjOqDbDz00fo7vTk9vg8u7w5uzg-usx0XpIqk2VuBK-aknIAoXVuGiUlVdoIpTkDBpJRXcqcNjx9kMl7IiShUmthuKE5H6H9wfvs3UsPIdaPrvddOlkzXnEmCSt4og4GSnsXggdTP3s7VX5RU1IvA69T4PV34Ind-zH291No_sjfhBNwOABz28Lif1N9fXUzKL8Al5CQJA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2393280263</pqid></control><display><type>article</type><title>Ghrelin‐insulin‐like growth factor‐1 axis is activated via autonomic neural circuits in the non‐alcoholic fatty liver disease</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Nagoya, Takuro ; Kamimura, Kenya ; Inoue, Ryosuke ; Ko, Masayoshi ; Owaki, Takashi ; Niwa, Yusuke ; Sakai, Norihiro ; Setsu, Toru ; Sakamaki, Akira ; Yokoo, Takeshi ; Kamimura, Hiroteru ; Nakamura, Yuka ; Ueno, Masaki ; Terai, Shuji</creator><creatorcontrib>Nagoya, Takuro ; Kamimura, Kenya ; Inoue, Ryosuke ; Ko, Masayoshi ; Owaki, Takashi ; Niwa, Yusuke ; Sakai, Norihiro ; Setsu, Toru ; Sakamaki, Akira ; Yokoo, Takeshi ; Kamimura, Hiroteru ; Nakamura, Yuka ; Ueno, Masaki ; Terai, Shuji</creatorcontrib><description>Background The correlation of the growth hormone (GH) and insulin‐like growth factor‐1 (IGF‐1) with non‐alcoholic fatty liver disease (NAFLD) has been reported in epidemiological studies. However, the mechanisms of molecular and inter‐organ systems that render these factors to influence on NAFLD have not been elucidated. In this study, we examined the induction of ghrelin which is the GH‐releasing hormone and IGF‐1, and involvement of autonomic neural circuits, in the pathogenesis of NAFLD. Methods The expression of gastric and hypothalamic ghrelin, neural activation in the brain, and serum IGF‐1 were examined in NAFLD models of choline‐deficient defined l‐amino‐acid diet‐fed, melanocortin 4 receptor knockout mice, and partial hepatectomy mice with or without the blockades of autonomic nerves to test the contribution of neural circuits connecting the brain, liver, and stomach. Key Results The fatty changes in the liver increased the expression of gastric ghrelin through the autonomic pathways which sends the neural signals to the arcuate nucleus in the hypothalamus through the afferent vagal nerve which reached the pituitary gland to release GH and then stimulate the IGF‐1 release from the liver. In addition, high levels of ghrelin expression in the arcuate nucleus were correlated with NAFLD progression regardless of the circuits. Conclusions Our study demonstrated that the fatty liver stimulates the autonomic nervous signal circuits which suppress the progression of the disease by activating the gastric ghrelin expression, the neural signal transduction in the brain, and the release of IGF‐1 from the liver. The neural signals from the liver with fatty infiltration activates the release of gastric ghrelin, leading to the activation of neural signals to the brain and release of IGF‐1 from the liver. The hypothalamic ghrelin may contribute to appetite.</description><identifier>ISSN: 1350-1925</identifier><identifier>EISSN: 1365-2982</identifier><identifier>DOI: 10.1111/nmo.13799</identifier><identifier>PMID: 31984635</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>Animals ; Arcuate nucleus ; autonomic nervous system ; Autonomic Nervous System - metabolism ; Autonomic Nervous System - pathology ; Choline ; Circuits ; Epidemiology ; Fatty liver ; Fatty Liver - metabolism ; Fatty Liver - pathology ; Gastric Mucosa - metabolism ; Gastric Mucosa - pathology ; Ghrelin ; Ghrelin - metabolism ; Growth factors ; Growth hormones ; Hepatectomy ; Hypothalamus ; Hypothalamus - metabolism ; IGF‐1 ; Insulin ; Insulin-Like Growth Factor I - metabolism ; Insulin-like growth factors ; Liver diseases ; Male ; Melanocortin ; Mice, Inbred C57BL ; Nerve Block ; neural circuits ; Neural networks ; Non-alcoholic Fatty Liver Disease - metabolism ; Non-alcoholic Fatty Liver Disease - pathology ; non‐alcoholic liver disease ; Pituitary ; Sensory neurons ; Signal transduction ; Stomach - innervation ; Stomach - pathology ; Vagus nerve ; Vagus Nerve - pathology</subject><ispartof>Neurogastroenterology and motility, 2020-05, Vol.32 (5), p.e13799-n/a</ispartof><rights>2020 John Wiley &amp; Sons Ltd</rights><rights>2020 John Wiley &amp; Sons Ltd.</rights><rights>Copyright © 2020 John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4709-874f539d713ee5cc4fda881acf5ac32e2e821c7841d398428b058018cc5f3f143</citedby><cites>FETCH-LOGICAL-c4709-874f539d713ee5cc4fda881acf5ac32e2e821c7841d398428b058018cc5f3f143</cites><orcidid>0000-0001-7182-4400</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31984635$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Nagoya, Takuro</creatorcontrib><creatorcontrib>Kamimura, Kenya</creatorcontrib><creatorcontrib>Inoue, Ryosuke</creatorcontrib><creatorcontrib>Ko, Masayoshi</creatorcontrib><creatorcontrib>Owaki, Takashi</creatorcontrib><creatorcontrib>Niwa, Yusuke</creatorcontrib><creatorcontrib>Sakai, Norihiro</creatorcontrib><creatorcontrib>Setsu, Toru</creatorcontrib><creatorcontrib>Sakamaki, Akira</creatorcontrib><creatorcontrib>Yokoo, Takeshi</creatorcontrib><creatorcontrib>Kamimura, Hiroteru</creatorcontrib><creatorcontrib>Nakamura, Yuka</creatorcontrib><creatorcontrib>Ueno, Masaki</creatorcontrib><creatorcontrib>Terai, Shuji</creatorcontrib><title>Ghrelin‐insulin‐like growth factor‐1 axis is activated via autonomic neural circuits in the non‐alcoholic fatty liver disease</title><title>Neurogastroenterology and motility</title><addtitle>Neurogastroenterol Motil</addtitle><description>Background The correlation of the growth hormone (GH) and insulin‐like growth factor‐1 (IGF‐1) with non‐alcoholic fatty liver disease (NAFLD) has been reported in epidemiological studies. However, the mechanisms of molecular and inter‐organ systems that render these factors to influence on NAFLD have not been elucidated. In this study, we examined the induction of ghrelin which is the GH‐releasing hormone and IGF‐1, and involvement of autonomic neural circuits, in the pathogenesis of NAFLD. Methods The expression of gastric and hypothalamic ghrelin, neural activation in the brain, and serum IGF‐1 were examined in NAFLD models of choline‐deficient defined l‐amino‐acid diet‐fed, melanocortin 4 receptor knockout mice, and partial hepatectomy mice with or without the blockades of autonomic nerves to test the contribution of neural circuits connecting the brain, liver, and stomach. Key Results The fatty changes in the liver increased the expression of gastric ghrelin through the autonomic pathways which sends the neural signals to the arcuate nucleus in the hypothalamus through the afferent vagal nerve which reached the pituitary gland to release GH and then stimulate the IGF‐1 release from the liver. In addition, high levels of ghrelin expression in the arcuate nucleus were correlated with NAFLD progression regardless of the circuits. Conclusions Our study demonstrated that the fatty liver stimulates the autonomic nervous signal circuits which suppress the progression of the disease by activating the gastric ghrelin expression, the neural signal transduction in the brain, and the release of IGF‐1 from the liver. The neural signals from the liver with fatty infiltration activates the release of gastric ghrelin, leading to the activation of neural signals to the brain and release of IGF‐1 from the liver. The hypothalamic ghrelin may contribute to appetite.</description><subject>Animals</subject><subject>Arcuate nucleus</subject><subject>autonomic nervous system</subject><subject>Autonomic Nervous System - metabolism</subject><subject>Autonomic Nervous System - pathology</subject><subject>Choline</subject><subject>Circuits</subject><subject>Epidemiology</subject><subject>Fatty liver</subject><subject>Fatty Liver - metabolism</subject><subject>Fatty Liver - pathology</subject><subject>Gastric Mucosa - metabolism</subject><subject>Gastric Mucosa - pathology</subject><subject>Ghrelin</subject><subject>Ghrelin - metabolism</subject><subject>Growth factors</subject><subject>Growth hormones</subject><subject>Hepatectomy</subject><subject>Hypothalamus</subject><subject>Hypothalamus - metabolism</subject><subject>IGF‐1</subject><subject>Insulin</subject><subject>Insulin-Like Growth Factor I - metabolism</subject><subject>Insulin-like growth factors</subject><subject>Liver diseases</subject><subject>Male</subject><subject>Melanocortin</subject><subject>Mice, Inbred C57BL</subject><subject>Nerve Block</subject><subject>neural circuits</subject><subject>Neural networks</subject><subject>Non-alcoholic Fatty Liver Disease - metabolism</subject><subject>Non-alcoholic Fatty Liver Disease - pathology</subject><subject>non‐alcoholic liver disease</subject><subject>Pituitary</subject><subject>Sensory neurons</subject><subject>Signal transduction</subject><subject>Stomach - innervation</subject><subject>Stomach - pathology</subject><subject>Vagus nerve</subject><subject>Vagus Nerve - pathology</subject><issn>1350-1925</issn><issn>1365-2982</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNp1kLlOxDAQhi0E4lgoeAFkiYoii484cUqEuCSOBurIOGPWkI3BdnbZjoaeZ-RJ8BKgY2RpRqNP38g_QruUjGmqw27qxpSXVbWCNikvRMYqyVaXsyAZrZjYQFshPBJCCpYX62iD00rmBReb6P1s4qG13efbh-1CP0ytfQL84N08TrBROjqflhSrVxtwemljZypCg2dWYdVH17mp1biD3qsWa-t1b2NCOxwngDu3dKpWu4lrE2ZUjAvc2hl43NgAKsA2WjOqDbDz00fo7vTk9vg8u7w5uzg-usx0XpIqk2VuBK-aknIAoXVuGiUlVdoIpTkDBpJRXcqcNjx9kMl7IiShUmthuKE5H6H9wfvs3UsPIdaPrvddOlkzXnEmCSt4og4GSnsXggdTP3s7VX5RU1IvA69T4PV34Ind-zH291No_sjfhBNwOABz28Lif1N9fXUzKL8Al5CQJA</recordid><startdate>202005</startdate><enddate>202005</enddate><creator>Nagoya, Takuro</creator><creator>Kamimura, Kenya</creator><creator>Inoue, Ryosuke</creator><creator>Ko, Masayoshi</creator><creator>Owaki, Takashi</creator><creator>Niwa, Yusuke</creator><creator>Sakai, Norihiro</creator><creator>Setsu, Toru</creator><creator>Sakamaki, Akira</creator><creator>Yokoo, Takeshi</creator><creator>Kamimura, Hiroteru</creator><creator>Nakamura, Yuka</creator><creator>Ueno, Masaki</creator><creator>Terai, Shuji</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0001-7182-4400</orcidid></search><sort><creationdate>202005</creationdate><title>Ghrelin‐insulin‐like growth factor‐1 axis is activated via autonomic neural circuits in the non‐alcoholic fatty liver disease</title><author>Nagoya, Takuro ; Kamimura, Kenya ; Inoue, Ryosuke ; Ko, Masayoshi ; Owaki, Takashi ; Niwa, Yusuke ; Sakai, Norihiro ; Setsu, Toru ; Sakamaki, Akira ; Yokoo, Takeshi ; Kamimura, Hiroteru ; Nakamura, Yuka ; Ueno, Masaki ; Terai, Shuji</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4709-874f539d713ee5cc4fda881acf5ac32e2e821c7841d398428b058018cc5f3f143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Animals</topic><topic>Arcuate nucleus</topic><topic>autonomic nervous system</topic><topic>Autonomic Nervous System - metabolism</topic><topic>Autonomic Nervous System - pathology</topic><topic>Choline</topic><topic>Circuits</topic><topic>Epidemiology</topic><topic>Fatty liver</topic><topic>Fatty Liver - metabolism</topic><topic>Fatty Liver - pathology</topic><topic>Gastric Mucosa - metabolism</topic><topic>Gastric Mucosa - pathology</topic><topic>Ghrelin</topic><topic>Ghrelin - metabolism</topic><topic>Growth factors</topic><topic>Growth hormones</topic><topic>Hepatectomy</topic><topic>Hypothalamus</topic><topic>Hypothalamus - metabolism</topic><topic>IGF‐1</topic><topic>Insulin</topic><topic>Insulin-Like Growth Factor I - metabolism</topic><topic>Insulin-like growth factors</topic><topic>Liver diseases</topic><topic>Male</topic><topic>Melanocortin</topic><topic>Mice, Inbred C57BL</topic><topic>Nerve Block</topic><topic>neural circuits</topic><topic>Neural networks</topic><topic>Non-alcoholic Fatty Liver Disease - metabolism</topic><topic>Non-alcoholic Fatty Liver Disease - pathology</topic><topic>non‐alcoholic liver disease</topic><topic>Pituitary</topic><topic>Sensory neurons</topic><topic>Signal transduction</topic><topic>Stomach - innervation</topic><topic>Stomach - pathology</topic><topic>Vagus nerve</topic><topic>Vagus Nerve - pathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nagoya, Takuro</creatorcontrib><creatorcontrib>Kamimura, Kenya</creatorcontrib><creatorcontrib>Inoue, Ryosuke</creatorcontrib><creatorcontrib>Ko, Masayoshi</creatorcontrib><creatorcontrib>Owaki, Takashi</creatorcontrib><creatorcontrib>Niwa, Yusuke</creatorcontrib><creatorcontrib>Sakai, Norihiro</creatorcontrib><creatorcontrib>Setsu, Toru</creatorcontrib><creatorcontrib>Sakamaki, Akira</creatorcontrib><creatorcontrib>Yokoo, Takeshi</creatorcontrib><creatorcontrib>Kamimura, Hiroteru</creatorcontrib><creatorcontrib>Nakamura, Yuka</creatorcontrib><creatorcontrib>Ueno, Masaki</creatorcontrib><creatorcontrib>Terai, Shuji</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>Neurogastroenterology and motility</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nagoya, Takuro</au><au>Kamimura, Kenya</au><au>Inoue, Ryosuke</au><au>Ko, Masayoshi</au><au>Owaki, Takashi</au><au>Niwa, Yusuke</au><au>Sakai, Norihiro</au><au>Setsu, Toru</au><au>Sakamaki, Akira</au><au>Yokoo, Takeshi</au><au>Kamimura, Hiroteru</au><au>Nakamura, Yuka</au><au>Ueno, Masaki</au><au>Terai, Shuji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ghrelin‐insulin‐like growth factor‐1 axis is activated via autonomic neural circuits in the non‐alcoholic fatty liver disease</atitle><jtitle>Neurogastroenterology and motility</jtitle><addtitle>Neurogastroenterol Motil</addtitle><date>2020-05</date><risdate>2020</risdate><volume>32</volume><issue>5</issue><spage>e13799</spage><epage>n/a</epage><pages>e13799-n/a</pages><issn>1350-1925</issn><eissn>1365-2982</eissn><abstract>Background The correlation of the growth hormone (GH) and insulin‐like growth factor‐1 (IGF‐1) with non‐alcoholic fatty liver disease (NAFLD) has been reported in epidemiological studies. However, the mechanisms of molecular and inter‐organ systems that render these factors to influence on NAFLD have not been elucidated. In this study, we examined the induction of ghrelin which is the GH‐releasing hormone and IGF‐1, and involvement of autonomic neural circuits, in the pathogenesis of NAFLD. Methods The expression of gastric and hypothalamic ghrelin, neural activation in the brain, and serum IGF‐1 were examined in NAFLD models of choline‐deficient defined l‐amino‐acid diet‐fed, melanocortin 4 receptor knockout mice, and partial hepatectomy mice with or without the blockades of autonomic nerves to test the contribution of neural circuits connecting the brain, liver, and stomach. Key Results The fatty changes in the liver increased the expression of gastric ghrelin through the autonomic pathways which sends the neural signals to the arcuate nucleus in the hypothalamus through the afferent vagal nerve which reached the pituitary gland to release GH and then stimulate the IGF‐1 release from the liver. In addition, high levels of ghrelin expression in the arcuate nucleus were correlated with NAFLD progression regardless of the circuits. Conclusions Our study demonstrated that the fatty liver stimulates the autonomic nervous signal circuits which suppress the progression of the disease by activating the gastric ghrelin expression, the neural signal transduction in the brain, and the release of IGF‐1 from the liver. The neural signals from the liver with fatty infiltration activates the release of gastric ghrelin, leading to the activation of neural signals to the brain and release of IGF‐1 from the liver. The hypothalamic ghrelin may contribute to appetite.</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>31984635</pmid><doi>10.1111/nmo.13799</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-7182-4400</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1350-1925
ispartof Neurogastroenterology and motility, 2020-05, Vol.32 (5), p.e13799-n/a
issn 1350-1925
1365-2982
language eng
recordid cdi_proquest_journals_2393280263
source Wiley-Blackwell Read & Publish Collection
subjects Animals
Arcuate nucleus
autonomic nervous system
Autonomic Nervous System - metabolism
Autonomic Nervous System - pathology
Choline
Circuits
Epidemiology
Fatty liver
Fatty Liver - metabolism
Fatty Liver - pathology
Gastric Mucosa - metabolism
Gastric Mucosa - pathology
Ghrelin
Ghrelin - metabolism
Growth factors
Growth hormones
Hepatectomy
Hypothalamus
Hypothalamus - metabolism
IGF‐1
Insulin
Insulin-Like Growth Factor I - metabolism
Insulin-like growth factors
Liver diseases
Male
Melanocortin
Mice, Inbred C57BL
Nerve Block
neural circuits
Neural networks
Non-alcoholic Fatty Liver Disease - metabolism
Non-alcoholic Fatty Liver Disease - pathology
non‐alcoholic liver disease
Pituitary
Sensory neurons
Signal transduction
Stomach - innervation
Stomach - pathology
Vagus nerve
Vagus Nerve - pathology
title Ghrelin‐insulin‐like growth factor‐1 axis is activated via autonomic neural circuits in the non‐alcoholic fatty liver disease
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T23%3A11%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ghrelin%E2%80%90insulin%E2%80%90like%20growth%20factor%E2%80%901%20axis%20is%20activated%20via%20autonomic%20neural%20circuits%20in%20the%20non%E2%80%90alcoholic%20fatty%20liver%20disease&rft.jtitle=Neurogastroenterology%20and%20motility&rft.au=Nagoya,%20Takuro&rft.date=2020-05&rft.volume=32&rft.issue=5&rft.spage=e13799&rft.epage=n/a&rft.pages=e13799-n/a&rft.issn=1350-1925&rft.eissn=1365-2982&rft_id=info:doi/10.1111/nmo.13799&rft_dat=%3Cproquest_cross%3E2393280263%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4709-874f539d713ee5cc4fda881acf5ac32e2e821c7841d398428b058018cc5f3f143%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2393280263&rft_id=info:pmid/31984635&rfr_iscdi=true